Fitting a Sobolev function to data III
Author(s): Fefferman, Charles L.; Israel, Arie; Luli, Garving K
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr1rx7f
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Fefferman, Charles L. | - |
dc.contributor.author | Israel, Arie | - |
dc.contributor.author | Luli, Garving K | - |
dc.date.accessioned | 2019-12-10T18:25:36Z | - |
dc.date.available | 2019-12-10T18:25:36Z | - |
dc.date.issued | 2016 | en_US |
dc.identifier.citation | Fefferman, Charles, Israel, Arie, Luli, Garving K. (2016). Fitting a Sobolev function to data III. REVISTA MATEMATICA IBEROAMERICANA, 32 (1039 - 1126. doi:10.4171/RMI/908 | en_US |
dc.identifier.issn | 0213-2230 | - |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/pr1rx7f | - |
dc.description.abstract | In this paper and two companion papers, we produce efficient algorithms to solve the following interpolation problem: Let m >= 1 and p > n >= 1. Given a finite set E subset of R-n and a function f : E -> R, compute an extension F of f belonging to the Sobolev space W-m,W-p (R-n) with norm having the smallest possible order of magnitude; secondly, compute the order of magnitude of the norm of F. The combined running time of our algorithms is at most CN log N, where N denotes the cardinality of E, and C depends only on m, n, and p. | en_US |
dc.format.extent | 1039 - 1126 | en_US |
dc.language.iso | en_US | en_US |
dc.relation.ispartof | REVISTA MATEMATICA IBEROAMERICANA | en_US |
dc.rights | Author's manuscript | en_US |
dc.title | Fitting a Sobolev function to data III | en_US |
dc.type | Journal Article | en_US |
dc.identifier.doi | doi:10.4171/RMI/908 | - |
dc.date.eissued | 2016-10-03 | en_US |
pu.type.symplectic | http://www.symplectic.co.uk/publications/atom-terms/1.0/journal-article | en_US |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
FittingSobolevFunctionToData3.pdf | 657.55 kB | Adobe PDF | View/Download |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.