Skip to main content

Bordered Floer homology and the spectral sequence of a branched double cover II: the spectral sequences agree

Author(s): Lipshitz, Robert; Ozsvath, Peter Steven; Thurston, Dylan P.

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1rx0j
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLipshitz, Robert-
dc.contributor.authorOzsvath, Peter Steven-
dc.contributor.authorThurston, Dylan P.-
dc.date.accessioned2018-07-20T15:11:14Z-
dc.date.available2018-07-20T15:11:14Z-
dc.date.issued2016-06en_US
dc.identifier.citationLipshitz, Robert, Ozsvath, Peter S, Thurston, Dylan P. (2016). Bordered Floer homology and the spectral sequence of a branched double cover II: the spectral sequences agree. JOURNAL OF TOPOLOGY, 9 (607 - 686. doi:10.1112/jtopol/jtw003en_US
dc.identifier.issn1753-8416-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1rx0j-
dc.description.abstractGiven a link in the 3-sphere, Ozsvath and Szabo showed that there is a spectral sequence starting at the Khovanov homology of the link and converging to the Heegaard Floer homology of its branched double cover. The aim of this paper is to explicitly calculate this spectral sequence in terms of bordered Floer homology. There are two primary ingredients in this computation: an explicit calculation of bimodules associated to Dehn twists, and a general pairing theorem for polygons. The previous part (Lipshitz, Ozsvath and Thurston ‘Bordered Floer homology and the spectral sequence of a branched double cover I’, J. Topol. 7 (2014) 1155-1199) focuses on computing the bimodules; this part focuses on the pairing theorem for polygons, in order to prove that the spectral sequence constructed in the previous part agrees with the one constructed by Ozsvath and Szabo.en_US
dc.format.extent607 - 686en_US
dc.language.isoen_USen_US
dc.relation.ispartofJOURNAL OF TOPOLOGYen_US
dc.rightsAuthor's manuscripten_US
dc.titleBordered Floer homology and the spectral sequence of a branched double cover II: the spectral sequences agreeen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1112/jtopol/jtw003-
dc.date.eissued2016-06-01en_US
dc.identifier.eissn1753-8424-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
1404.2894v3.pdf1.41 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.