Strong maximum principle for mean curvature operators on subRiemannian manifolds
Author(s): Cheng, Jih-Hsin; Chiu, Hung-Lin; Hwang, Jenn-Fang; Yang, Paul C.
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr1rt3n
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Cheng, Jih-Hsin | - |
dc.contributor.author | Chiu, Hung-Lin | - |
dc.contributor.author | Hwang, Jenn-Fang | - |
dc.contributor.author | Yang, Paul C. | - |
dc.date.accessioned | 2019-04-04T22:25:51Z | - |
dc.date.available | 2019-04-04T22:25:51Z | - |
dc.date.issued | 2018-12 | en_US |
dc.identifier.citation | Cheng, Jih-Hsin, Chiu, Hung-Lin, Hwang, Jenn-Fang, Yang, Paul. (2018). Strong maximum principle for mean curvature operators on subRiemannian manifolds. MATHEMATISCHE ANNALEN, 372 (1393 - 1435). doi:10.1007/s00208-018-1700-1 | en_US |
dc.identifier.issn | 0025-5831 | - |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/pr1rt3n | - |
dc.description.abstract | We study the strong maximum principle for horizontal (p-)mean curvature operator and p-(sub)Laplacian operator on subRiemannian manifolds including, in particular, Heisenberg groups and Heisenberg cylinders. Under a certain Hormander type condition on vector fields, we show the strong maximum principle holds in higher dimensions for two cases: (a) the touching point is nonsingular; (b) the touching point is an isolated singular point for one of comparison functions. For a background subRiemannian manifold with local symmetry of isometric translations, we have the strong maximum principle for associated graphs which include, among others, intrinsic graphs with constant horizontal (p-)mean curvature. As applications, we show a rigidity result of horizontal (p-)minimal hypersurfaces in any higher dimensional Heisenberg cylinder and a pseudo-halfspace theorem for any Heisenberg group. | en_US |
dc.format.extent | 1393 - 1435 | en_US |
dc.language | English | en_US |
dc.language.iso | en_US | en_US |
dc.relation.ispartof | MATHEMATISCHE ANNALEN | en_US |
dc.rights | Author's manuscript | en_US |
dc.title | Strong maximum principle for mean curvature operators on subRiemannian manifolds | en_US |
dc.type | Journal Article | en_US |
dc.identifier.doi | doi:10.1007/s00208-018-1700-1 | - |
dc.date.eissued | 2018-06-01 | en_US |
dc.identifier.eissn | 1432-1807 | - |
pu.type.symplectic | http://www.symplectic.co.uk/publications/atom-terms/1.0/journal-article | en_US |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
1611.02384.pdf | 436.94 kB | Adobe PDF | View/Download |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.