Skip to main content

No-go theorem for boson condensation in topologically ordered quantum liquids

Author(s): Neupert, Titus; He, Huan; von Keyserlingk, Curt; Sierra, German; Bernevig, Bogdan A.

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1rr7j
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNeupert, Titus-
dc.contributor.authorHe, Huan-
dc.contributor.authorvon Keyserlingk, Curt-
dc.contributor.authorSierra, German-
dc.contributor.authorBernevig, Bogdan A.-
dc.date.accessioned2020-10-30T19:20:28Z-
dc.date.available2020-10-30T19:20:28Z-
dc.date.issued2016-12-07en_US
dc.identifier.citationNeupert, Titus, He, Huan, von Keyserlingk, Curt, Sierra, German, Bernevig, B Andrei. (2016). No-go theorem for boson condensation in topologically ordered quantum liquids. NEW JOURNAL OF PHYSICS, 18 (10.1088/1367-2630/18/12/123009en_US
dc.identifier.issn1367-2630-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1rr7j-
dc.description.abstractCertain phase transitions between topological quantum field theories (TQFTs) are driven by the condensation of bosonic anyons. However, as bosons in a TQFT are themselves nontrivial collective excitations, there can be topological obstructions that prevent them from condensing. Here we formulate such an obstruction in the form of a no-go theorem. We use it to show that no condensation is possible in SO(3)(k) TQFTs with odd k. We further show that a ‘layered’ theory obtained by tensoring SO(3)(k) TQFT with itself any integer number of times does not admit condensation transitions either. This includes (as the case k = 3) the noncondensability of any number of layers of the Fibonacci TQFT.en_US
dc.language.isoen_USen_US
dc.relation.ispartofNEW JOURNAL OF PHYSICSen_US
dc.rightsFinal published version. This is an open access article.en_US
dc.titleNo-go theorem for boson condensation in topologically ordered quantum liquidsen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1088/1367-2630/18/12/123009-
dc.date.eissued2016-12-07en_US
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
NewJ.Phys.123009.pdf823.55 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.