Skip to main content

CODA: High dimensional Copula Discriminant Analysis

Author(s): Han, Fang; Zhao, Tuo; Liu, Han

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1rr5q
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHan, Fang-
dc.contributor.authorZhao, Tuo-
dc.contributor.authorLiu, Han-
dc.date.accessioned2020-04-09T17:14:33Z-
dc.date.available2020-04-09T17:14:33Z-
dc.date.issued2013en_US
dc.identifier.citationHan, Fang, Tuo Zhao, and Han Liu. "CODA: High dimensional copula discriminant analysis." Journal of Machine Learning Research 14, no. Feb (2013): 629-671. Retrieved from http://www.jmlr.org/papers/v14/han13a.htmlen_US
dc.identifier.issn1532-4435-
dc.identifier.urihttp://www.jmlr.org/papers/v14/han13a.html-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1rr5q-
dc.description.abstractWe propose a high dimensional classification method, named the Copula Discriminant Analysis (CODA). The CODA generalizes the normal-based linear discriminant analysis to the larger Gaussian Copula models (or the nonparanormal) as proposed by Liu et al. (2009). To simultaneously achieve estimation efficiency and robustness, the nonparametric rank-based methods including the Spearman's rho and Kendall's tau are exploited in estimating the covariance matrix. In high dimensional settings, we prove that the sparsity pattern of the discriminant features can be consistently recovered with the parametric rate, and the expected misclassification error is consistent to the Bayes risk. Our theory is backed up by careful numerical experiments, which show that the extra flexibility gained by the CODA method incurs little efficiency loss even when the data are truly Gaussian. These results suggest that the CODA method can be an alternative choice besides the normal-based high dimensional linear discriminant analysis.en_US
dc.format.extent629 - 671en_US
dc.language.isoen_USen_US
dc.relation.ispartofJournal of Machine Learning Researchen_US
dc.rightsFinal published version. This is an open access article.en_US
dc.titleCODA: High dimensional Copula Discriminant Analysisen_US
dc.typeJournal Articleen_US
dc.identifier.eissn1533-7928-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
CODAHighDDiscriminantAnalysis.pdf389.94 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.