Skip to main content

Poisson brackets of partitions of unity on surfaces

Author(s): Buhovsky, Lev; Logunov, Aleksandr; Tanny, Shira

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1rr1pm7b
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBuhovsky, Lev-
dc.contributor.authorLogunov, Aleksandr-
dc.contributor.authorTanny, Shira-
dc.date.accessioned2023-12-27T20:43:33Z-
dc.date.available2023-12-27T20:43:33Z-
dc.date.issued2020en_US
dc.identifier.citationBuhovsky, Lev, Logunov, Alexander, Tanny, Shira. (2020). Poisson brackets of partitions of unity on surfaces. COMMENTARII MATHEMATICI HELVETICI, 95 (247 - 278. doi:10.4171/CMH/487en_US
dc.identifier.issn0010-2571-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1rr1pm7b-
dc.description.abstractGiven an open cover of a closed symplectic manifold, consider all smooth partitions of unity consisting of functions supported in the covering sets. The Poisson bracket invariant of the cover measures how much the functions from such a partition of unity can become close to being Poisson commuting. We introduce a new approach to this invariant, which enables us to prove the lower bound conjectured by L. Polterovich, in dimension 2.en_US
dc.format.extent247 - 278en_US
dc.language.isoen_USen_US
dc.relation.ispartofCOMMENTARII MATHEMATICI HELVETICIen_US
dc.rightsAuthor's manuscripten_US
dc.titlePoisson brackets of partitions of unity on surfacesen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.4171/CMH/487-
dc.date.eissued2020-06-16en_US
dc.identifier.eissn1420-8946-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
1705.02513.pdf547.39 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.