To refer to this page use:
http://arks.princeton.edu/ark:/88435/pr1rg5p
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ekren, I | - |
dc.contributor.author | Soner, H Mete | - |
dc.date.accessioned | 2021-10-11T14:18:01Z | - |
dc.date.available | 2021-10-11T14:18:01Z | - |
dc.date.issued | 2018-03-01 | en_US |
dc.identifier.citation | Ekren, I, Soner, HM. (2018). Constrained Optimal Transport. Archive for Rational Mechanics and Analysis, 227 (3), 929 - 965. doi:10.1007/s00205-017-1178-0 | en_US |
dc.identifier.issn | 0003-9527 | - |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/pr1rg5p | - |
dc.description.abstract | © 2017, Springer-Verlag GmbH Germany. The classical duality theory of Kantorovich (C R (Doklady) Acad Sci URSS (NS) 37:199–201, 1942) and Kellerer (Z Wahrsch Verw Gebiete 67(4):399–432, 1984) for classical optimal transport is generalized to an abstract framework and a characterization of the dual elements is provided. This abstract generalization is set in a Banach lattice X with an order unit. The problem is given as the supremum over a convex subset of the positive unit sphere of the topological dual of X and the dual problem is defined on the bi-dual of X. These results are then applied to several extensions of the classical optimal transport. | en_US |
dc.format.extent | 929 - 965 | en_US |
dc.language.iso | en_US | en_US |
dc.relation.ispartof | Archive for Rational Mechanics and Analysis | en_US |
dc.rights | Author's manuscript | en_US |
dc.title | Constrained Optimal Transport | en_US |
dc.type | Journal Article | en_US |
dc.identifier.doi | doi:10.1007/s00205-017-1178-0 | - |
dc.identifier.eissn | 1432-0673 | - |
pu.type.symplectic | http://www.symplectic.co.uk/publications/atom-terms/1.0/journal-article | en_US |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Constrained Optimal Transport.pdf | 374.38 kB | Adobe PDF | View/Download |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.