Skip to main content

Modeling UV Radiation Feedback from Massive Stars. III. Escape of Radiation from Star-forming Giant Molecular Clouds

Author(s): Kim, Jeong-Gyu; Kim, Woong-Tae; Ostriker, Eve C

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1r49g86s
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKim, Jeong-Gyu-
dc.contributor.authorKim, Woong-Tae-
dc.contributor.authorOstriker, Eve C-
dc.date.accessioned2022-01-25T15:02:20Z-
dc.date.available2022-01-25T15:02:20Z-
dc.date.issued2019-09-20en_US
dc.identifier.citationKim, Jeong-Gyu, Kim, Woong-Tae, Ostriker, Eve C. (2019). Modeling UV Radiation Feedback from Massive Stars. III. Escape of Radiation from Star-forming Giant Molecular Clouds. ASTROPHYSICAL JOURNAL, 883 (10.3847/1538-4357/ab3d3den_US
dc.identifier.issn0004-637X-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1r49g86s-
dc.description.abstractUsing a suite of radiation hydrodynamic simulations of star cluster formation in turbulent clouds, we study the escape fraction of ionizing (Lyman continuum) and non-ionizing (FUV) radiation for a wide range of cloud masses and sizes. The escape fraction increases as H II. regions evolve and reaches unity within a few dynamical times. The cumulative escape fraction before the onset of the first supernova explosion is in the range 0.05-0.58; this is lower for higher initial cloud surface density, and higher for less massive and more compact clouds due to rapid destruction. Once H II. regions break out of their local environment, both ionizing and non-ionizing photons escape from clouds through fully ionized, low-density sight lines. Consequently, dust becomes the dominant absorber of ionizing radiation at late times, and the escape fraction of non-ionizing radiation is only slightly larger than that of ionizing radiation. The escape fraction is determined primarily by the mean <tau > and width sigma of the optical-depth distribution in the large-scale cloud, increasing for smaller <tau > and/or larger sigma. The escape fraction exceeds (sometimes by three orders of magnitude) the naive estimate e(-<tau >) due to the nonzero sigma induced by turbulence. We present two simple methods to estimate, within similar to 20%, the escape fraction of non-ionizing radiation using the observed dust optical depth in clouds projected on the plane of sky. We discuss implications of our results for observations, including inference of star formation rates in individual molecular clouds and accounting for diffuse ionized gas on galactic scales.en_US
dc.language.isoen_USen_US
dc.relationhttps://ui.adsabs.harvard.edu/abs/2019ApJ...883..102K/abstracten_US
dc.relation.ispartofASTROPHYSICAL JOURNALen_US
dc.rightsFinal published version. Article is made available in OAR by the publisher's permission or policy.en_US
dc.titleModeling UV Radiation Feedback from Massive Stars. III. Escape of Radiation from Star-forming Giant Molecular Cloudsen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.3847/1538-4357/ab3d3d-
dc.date.eissued2019-09-25en_US
dc.identifier.eissn1538-4357-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
Kim_2019_ApJ_883_102.pdf11.4 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.