Skip to main content

Molecular characterization of water soluble organic nitrogen in marine rainwater by ultra-high resolution electrospray ionization mass spectrometry

Author(s): Altieri, Katye E; Hastings, Meredith G; Peters, Andrew J; Sigman, Daniel M

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1qv3c344
Abstract: Atmospheric water soluble organic nitrogen (WSON) is a subset of the complex organic matter in aerosols and rainwater, which impacts cloud condensation processes and aerosol chemical and optical properties and may play a significant role in the biogeochemical cycle of N. However, its sources, composition, connections to inorganic N, and variability are largely unknown. Rainwater samples were collected on the island of Bermuda (32.27° N, 64.87° W), which experiences both anthropogenic and marine influenced air masses. Samples were analyzed by ultra-high resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry to chemically characterize the WSON. Elemental compositions of 2281 N containing compounds were determined over the mass range m/z+ 50 to 500. The five compound classes with the largest number of elemental formulas identified, in order from the highest number of formulas to the lowest, contained carbon, hydrogen, oxygen, and nitrogen (CHON+), CHON compounds that contained sulfur (CHONS+), CHON compounds that contained phosphorus (CHONP+), CHON compounds that contained both sulfur and phosphorus (CHONSP+), and compounds that contained only carbon, hydrogen, and nitrogen (CHN+). Compared to rainwater collected in the continental USA, average O:C ratios of all N containing compound classes were lower in the marine samples whereas double bond equivalent values were higher, suggesting a reduced role of secondary formation mechanisms. Despite their prevalence in continental rainwater, no organonitrates or nitrooxy-organosulfates were detected, but there was an increased presence of organic S and organic P containing compounds in the marine rainwater. Cluster analysis showed a clear chemical distinction between samples collected during the cold season (October to March) which have anthropogenic air mass origins and samples collected during the warm season (April to September) with remote marine air mass origins. This, in conjunction with patterns identified in van Krevelen diagrams, suggests that the cold season WSON is a mixture of organic matter with both marine and anthropogenic sources while in the warm season the WSON appears to be dominated by marine sources. These findings indicate that, although the concentrations and percent contribution of WSON to total N is fairly consistent across diverse geographic regions, the chemical composition of WSON varies strongly as a function of source region and atmospheric environment.
Publication Date: 2012
Electronic Publication Date: 12-Apr-2012
Citation: Altieri, Katye E., Hastings, Meredith G., Peters, Andrew J., and Sigman, Daniel M. "Molecular characterization of water soluble organic nitrogen in marine rainwater by ultra-high resolution electrospray ionization mass spectrometry." Atmospheric Chemistry and Physics, 12 (2012): 3557–3571. doi:10.5194/acp-12-3557-2012.
DOI: doi:10.5194/acp-12-3557-2012
ISSN: 1680-7316
EISSN: 1680-7324
Pages: 3557 - 3571
Type of Material: Journal Article
Journal/Proceeding Title: Atmospheric Chemistry and Physics
Version: Final published version. This is an open access article.



Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.