Skip to main content

A New Optimal Stepsize for Approximate Dynamic Programming

Author(s): Ryzhov, Ilya O; Frazier, Peter I; Powell, Warren B

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1qp2c
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRyzhov, Ilya O-
dc.contributor.authorFrazier, Peter I-
dc.contributor.authorPowell, Warren B-
dc.date.accessioned2021-10-11T14:17:50Z-
dc.date.available2021-10-11T14:17:50Z-
dc.date.issued2015-03en_US
dc.identifier.citationRyzhov, Ilya O, Frazier, Peter I, Powell, Warren B. (2015). A New Optimal Stepsize for Approximate Dynamic Programming. IEEE Transactions on Automatic Control, 60 (3), 743 - 758. doi:10.1109/TAC.2014.2357134en_US
dc.identifier.issn0018-9286-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1qp2c-
dc.description.abstractApproximate dynamic programming (ADP) has proven itself in a wide range of applications spanning large-scale transportation problems, health care, revenue management, and energy systems. The design of effective ADP algorithms has many dimensions, but one crucial factor is the stepsize rule used to update a value function approximation. Many operations research applications are computationally intensive, and it is important to obtain good results quickly. Furthermore, the most popular stepsize formulas use tunable parameters and can produce very poor results if tuned improperly. We derive a new stepsize rule that optimizes the prediction error in order to improve the short-term performance of an ADP algorithm. With only one, relatively insensitive tunable parameter, the new rule adapts to the level of noise in the problem and produces faster convergence in numerical experiments.en_US
dc.format.extent743 - 758en_US
dc.language.isoen_USen_US
dc.relation.ispartofIEEE Transactions on Automatic Controlen_US
dc.rightsAuthor's manuscripten_US
dc.titleA New Optimal Stepsize for Approximate Dynamic Programmingen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1109/TAC.2014.2357134-
dc.identifier.eissn1558-2523-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
A new optimal stepsize for approximate dynamic programming.pdf4.21 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.