Marcenko-Pastur law for Tyler’s M-estimator
Author(s): Zhang, Teng; Cheng, Xiuyuan; Singer, Amit
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr1qf19
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Zhang, Teng | - |
dc.contributor.author | Cheng, Xiuyuan | - |
dc.contributor.author | Singer, Amit | - |
dc.date.accessioned | 2019-08-29T17:02:05Z | - |
dc.date.available | 2019-08-29T17:02:05Z | - |
dc.date.issued | 2016-07 | en_US |
dc.identifier.citation | Zhang, Teng, Cheng, Xiuyuan, Singer, Amit. (2016). Marcenko-Pastur law for Tyler’s M-estimator. JOURNAL OF MULTIVARIATE ANALYSIS, 149 (114 - 123. doi:10.1016/j.jmva.2016.03.010 | en_US |
dc.identifier.issn | 0047-259X | - |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/pr1qf19 | - |
dc.description.abstract | This paper studies the limiting behavior of Tyler’s M-estimator for the scatter matrix, in the regime that the number of samples n and their dimension p both go to infinity, and pin converges to a constant y with 0 < y < 1. We prove that when the data samples, x(1), ... , x(n) are identically and independently generated from the Gaussian distribution (0, 1), the operator norm of the difference between a properly scaled Tyler’s M-estimator and Sigma(n)(i=1)xixi T/n tends to zero. As a result, the spectral distribution of Tyler’s M-estimator converges weakly to the Marcenko-Pastur distribution. (C) 2016 Elsevier Inc. All rights reserved. | en_US |
dc.format.extent | 114 - 123 | en_US |
dc.language.iso | en_US | en_US |
dc.relation.ispartof | JOURNAL OF MULTIVARIATE ANALYSIS | en_US |
dc.rights | Author's manuscript | en_US |
dc.title | Marcenko-Pastur law for Tyler’s M-estimator | en_US |
dc.type | Journal Article | en_US |
dc.identifier.doi | doi:10.1016/j.jmva.2016.03.010 | - |
dc.date.eissued | 2016-04-12 | en_US |
pu.type.symplectic | http://www.symplectic.co.uk/publications/atom-terms/1.0/journal-article | en_US |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
1401.3424v4.pdf | 213.98 kB | Adobe PDF | View/Download | |
1401.3424v4.pdf | 213.98 kB | Adobe PDF | View/Download |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.