Skip to main content

Snowball Earth climate dynamics and Cryogenian geology-geobiology

Author(s): Hoffman, Paul F; Abbot, Dorian S; Ashkenazy, Yosef; Benn, Douglas I; Brocks, Jochen J; et al

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1pz9z
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHoffman, Paul F-
dc.contributor.authorAbbot, Dorian S-
dc.contributor.authorAshkenazy, Yosef-
dc.contributor.authorBenn, Douglas I-
dc.contributor.authorBrocks, Jochen J-
dc.contributor.authorCohen, Phoebe A-
dc.contributor.authorCox, Grant M-
dc.contributor.authorCreveling, Jessica R-
dc.contributor.authorDonnadieu, Yannick-
dc.contributor.authorErwin, Douglas H-
dc.contributor.authorFairchild, Ian J-
dc.contributor.authorFerreira, David-
dc.contributor.authorGoodman, Jason C-
dc.contributor.authorHalverson, Galen P-
dc.contributor.authorJansen, Malte F-
dc.contributor.authorLe Hir, Guillaume-
dc.contributor.authorLove, Gordon D-
dc.contributor.authorMacdonald, Francis A-
dc.contributor.authorMaloof, Adam C-
dc.contributor.authorPartin, Camille A-
dc.contributor.authorRamstein, Gilles-
dc.contributor.authorRose, Brian EJ-
dc.contributor.authorRose, Catherine V-
dc.contributor.authorSadler, Peter M-
dc.contributor.authorTziperman, Eli-
dc.contributor.authorVoigt, Aiko-
dc.contributor.authorWarren, Stephen G-
dc.date.accessioned2022-01-25T14:48:19Z-
dc.date.available2022-01-25T14:48:19Z-
dc.date.issued2017-11-08en_US
dc.identifier.citationHoffman, Paul F., Dorian S. Abbot, Yosef Ashkenazy, Douglas I. Benn, Jochen J. Brocks, Phoebe A. Cohen, Grant M. Cox et al. "Snowball Earth climate dynamics and Cryogenian geology-geobiology." Science Advances 3, no. 11 (2017): e1600983. doi:10.1126/sciadv.1600983en_US
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1pz9z-
dc.description.abstractGeological evidence indicates that grounded ice sheets reached sea level at all latitudes during two long-lived Cryogenian (58 and ≥5 My) glaciations. Combined uranium-lead and rhenium-osmium dating suggests that the older (Sturtian) glacial onset and both terminations were globally synchronous. Geochemical data imply that CO2 was 102 PAL (present atmospheric level) at the younger termination, consistent with a global ice cover. Sturtian glaciation followed breakup of a tropical supercontinent, and its onset coincided with the equatorial emplacement of a large igneous province. Modeling shows that the small thermal inertia of a globally frozen surface reverses the annual mean tropical atmospheric circulation, producing an equatorial desert and net snow and frost accumulation elsewhere. Oceanic ice thickens, forming a sea glacier that flows gravitationally toward the equator, sustained by the hydrologic cycle and by basal freezing and melting. Tropical ice sheets flow faster as CO2 rises but lose mass and become sensitive to orbital changes. Equatorial dust accumulation engenders supraglacial oligotrophic meltwater ecosystems, favorable for cyanobacteria and certain eukaryotes. Meltwater flushing through cracks enables organic burial and submarine deposition of airborne volcanic ash. The subglacial ocean is turbulent and well mixed, in response to geothermal heating and heat loss through the ice cover, increasing with latitude. Terminal carbonate deposits, unique to Cryogenian glaciations, are products of intense weathering and ocean stratification. Whole-ocean warming and collapsing peripheral bulges allow marine coastal flooding to continue long after ice-sheet disappearance. The evolutionary legacy of Snowball Earth is perceptible in fossils and living organisms.en_US
dc.format.extente1600983 - ?en_US
dc.languageengen_US
dc.language.isoen_USen_US
dc.relation.ispartofScience Advancesen_US
dc.rightsFinal published version. This is an open access article.en_US
dc.titleSnowball Earth climate dynamics and Cryogenian geology-geobiologyen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1126/sciadv.1600983-
dc.identifier.eissn2375-2548-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
Snowball Earth climate dynamics and Cryogenian geology-geobiology.pdf7.22 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.