The proportion of plane cubic curves over Q that everywhere locally have a point
Author(s): Bhargava, Manjul; Cremona, John E.; Fisher, Tom A.
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr1ps8n
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Bhargava, Manjul | - |
dc.contributor.author | Cremona, John E. | - |
dc.contributor.author | Fisher, Tom A. | - |
dc.date.accessioned | 2017-11-21T18:58:06Z | - |
dc.date.available | 2017-11-21T18:58:06Z | - |
dc.date.issued | 2016-06 | en_US |
dc.identifier.citation | Bhargava, Manjul, Cremona, John, Fisher, Tom. (2016). The proportion of plane cubic curves over Q that everywhere locally have a point. INTERNATIONAL JOURNAL OF NUMBER THEORY, 12 (1077 - 1092. doi:10.1142/S1793042116500664 | en_US |
dc.identifier.issn | 1793-0421 | - |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/pr1ps8n | - |
dc.description.abstract | We show that the proportion of plane cubic curves over Q p that have a Q p -rational point is a rational function in p , where the rational function is independent of p ,andwe determine this rational function explicitly. As a consequence, we obtain the density of plane cubic curves over Q that have points everywhere locally; numerically, this density is shown to be ≈ 97 . 3%. | en_US |
dc.format.extent | 1077 - 1092 | en_US |
dc.language.iso | en | en_US |
dc.relation.ispartof | INTERNATIONAL JOURNAL OF NUMBER THEORY | en_US |
dc.rights | Author's manuscript | en_US |
dc.title | The proportion of plane cubic curves over Q that everywhere locally have a point | en_US |
dc.type | Journal Article | en_US |
dc.identifier.doi | doi:10.1142/S1793042116500664 | - |
dc.date.eissued | 2015-10-05 | en_US |
dc.identifier.eissn | 1793-7310 | - |
pu.type.symplectic | http://www.symplectic.co.uk/publications/atom-terms/1.0/journal-article | en_US |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
1311.5578v1.pdf | 117.22 kB | Adobe PDF | View/Download |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.