Skip to main content

The proportion of plane cubic curves over Q that everywhere locally have a point

Author(s): Bhargava, Manjul; Cremona, John E.; Fisher, Tom A.

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1ps8n
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBhargava, Manjul-
dc.contributor.authorCremona, John E.-
dc.contributor.authorFisher, Tom A.-
dc.date.accessioned2017-11-21T18:58:06Z-
dc.date.available2017-11-21T18:58:06Z-
dc.date.issued2016-06en_US
dc.identifier.citationBhargava, Manjul, Cremona, John, Fisher, Tom. (2016). The proportion of plane cubic curves over Q that everywhere locally have a point. INTERNATIONAL JOURNAL OF NUMBER THEORY, 12 (1077 - 1092. doi:10.1142/S1793042116500664en_US
dc.identifier.issn1793-0421-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1ps8n-
dc.description.abstractWe show that the proportion of plane cubic curves over Q p that have a Q p -rational point is a rational function in p , where the rational function is independent of p ,andwe determine this rational function explicitly. As a consequence, we obtain the density of plane cubic curves over Q that have points everywhere locally; numerically, this density is shown to be ≈ 97 . 3%.en_US
dc.format.extent1077 - 1092en_US
dc.language.isoenen_US
dc.relation.ispartofINTERNATIONAL JOURNAL OF NUMBER THEORYen_US
dc.rightsAuthor's manuscripten_US
dc.titleThe proportion of plane cubic curves over Q that everywhere locally have a pointen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1142/S1793042116500664-
dc.date.eissued2015-10-05en_US
dc.identifier.eissn1793-7310-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
1311.5578v1.pdf117.22 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.