Skip to main content

Immature Neurons and Radial Glia, But Not Astrocytes or Microglia, Are Altered in Adult Cntnap2 and Shank3 Mice, Models of Autism

Author(s): Cope, Elise C.; Briones, Brandy A.; Brockett, Adam T.; Martinez, Susana; Vigneron, Pierre-Antoine; et al

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1pr0z
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCope, Elise C.-
dc.contributor.authorBriones, Brandy A.-
dc.contributor.authorBrockett, Adam T.-
dc.contributor.authorMartinez, Susana-
dc.contributor.authorVigneron, Pierre-Antoine-
dc.contributor.authorOpendak, Maya-
dc.contributor.authorWang, Samuel S.-H.-
dc.contributor.authorGould, Elizabeth-
dc.date.accessioned2019-10-28T15:54:59Z-
dc.date.available2019-10-28T15:54:59Z-
dc.date.issued2016-10-17en_US
dc.identifier.citationCope, EC, Briones, BA, Brockett, AT, Martinez, S, Vigneron, P-A, Opendak, M, Wang, S S- H, Gould, E. (2016). Immature Neurons and Radial Glia, But Not Astrocytes or Microglia, Are Altered in Adult Cntnap2 and Shank3 Mice, Models of Autism. eNeuro, 3 (5), 10.1523/ENEURO.0196-16.2016en_US
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1pr0z-
dc.description.abstractAutism spectrum disorder (ASD) is often associated with cognitive deficits and excessive anxiety. Neuroimaging studies have shown atypical structure and neural connectivity in the hippocampus, medial prefrontal cortex (mPFC), and striatum, regions associated with cognitive function and anxiety regulation. Adult hippocampal neurogenesis is involved in many behaviors that are disrupted in ASD, including cognition, anxiety, and social behaviors. Additionally, glial cells, such as astrocytes and microglia, are important for modulating neural connectivity during development, and glial dysfunction has been hypothesized to be a key contributor to the development of ASD. Cells with astroglial characteristics are known to serve as progenitor cells in the developing and adult brain. Here, we examined adult neurogenesis in the hippocampus, as well as astroglia and microglia in the hippocampus, mPFC, and striatum of two models that display autism-like phenotypes, Cntnap2−/− and Shank3+/ΔC transgenic mice. We found a substantial decrease in the number of immature neurons and radial glial progenitor cells in the ventral hippocampus of both transgenic models compared with wild-type controls. No consistent differences were detected in the number or size of astrocytes or microglia in any other brain region examined. Future work is needed to explore the functional contribution of adult neurogenesis to autism-related behaviors as well as to temporally characterize glial plasticity as it is associated with ASD.en_US
dc.format.extent1-25en_US
dc.relation.ispartofeNeuroen_US
dc.rightsFinal published version. This is an open access article.en_US
dc.titleImmature Neurons and Radial Glia, But Not Astrocytes or Microglia, Are Altered in Adult Cntnap2 and Shank3 Mice, Models of Autismen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1523/ENEURO.0196-16.2016-
dc.date.eissued2016-09-28en_US
dc.identifier.eissn2373-2822-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
ENEURO.0196-16.2016.full.pdf5.88 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.