Skip to main content

Remarks on a Liouville-Type Theorem for Beltrami Flows

Author(s): Chae, Dongho; Constantin, Peter

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1ph1q
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChae, Dongho-
dc.contributor.authorConstantin, Peter-
dc.date.accessioned2017-11-21T19:18:12Z-
dc.date.available2017-11-21T19:18:12Z-
dc.date.issued2015en_US
dc.identifier.citationChael, Dongho, Constantin, Peter. (2015). Remarks on a Liouville-Type Theorem for Beltrami Flows. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 10012 - 10016. doi:10.1093/imrn/rnu233en_US
dc.identifier.issn1073-7928-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1ph1q-
dc.description.abstractWe present a simple, short, and elementary proof that if v is a Beltrami flow with a finite energy in R 3 ,then v = 0. In the case of the Beltrami flows satisfying v ∈ L ∞ loc ( R 3 ) ∩ L q ( R 3 ) with q ∈ [2 , 3 ) ,or | v( x ) |= O ( 1 / | x | 1 + ε ) for some ε> 0, we provide a different, simple proof that v = 0.en_US
dc.format.extent10012 - 10016en_US
dc.language.isoenen_US
dc.relation.ispartofINTERNATIONAL MATHEMATICS RESEARCH NOTICESen_US
dc.rightsAuthor's manuscripten_US
dc.titleRemarks on a Liouville-Type Theorem for Beltrami Flowsen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1093/imrn/rnu233-
dc.date.eissued2014-12-22en_US
dc.identifier.eissn1687-0247-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
1407.7303v1.pdf93.15 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.