Remarks on a Liouville-Type Theorem for Beltrami Flows
Author(s): Chae, Dongho; Constantin, Peter
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr1ph1q
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chae, Dongho | - |
dc.contributor.author | Constantin, Peter | - |
dc.date.accessioned | 2017-11-21T19:18:12Z | - |
dc.date.available | 2017-11-21T19:18:12Z | - |
dc.date.issued | 2015 | en_US |
dc.identifier.citation | Chael, Dongho, Constantin, Peter. (2015). Remarks on a Liouville-Type Theorem for Beltrami Flows. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 10012 - 10016. doi:10.1093/imrn/rnu233 | en_US |
dc.identifier.issn | 1073-7928 | - |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/pr1ph1q | - |
dc.description.abstract | We present a simple, short, and elementary proof that if v is a Beltrami flow with a finite energy in R 3 ,then v = 0. In the case of the Beltrami flows satisfying v ∈ L ∞ loc ( R 3 ) ∩ L q ( R 3 ) with q ∈ [2 , 3 ) ,or | v( x ) |= O ( 1 / | x | 1 + ε ) for some ε> 0, we provide a different, simple proof that v = 0. | en_US |
dc.format.extent | 10012 - 10016 | en_US |
dc.language.iso | en | en_US |
dc.relation.ispartof | INTERNATIONAL MATHEMATICS RESEARCH NOTICES | en_US |
dc.rights | Author's manuscript | en_US |
dc.title | Remarks on a Liouville-Type Theorem for Beltrami Flows | en_US |
dc.type | Journal Article | en_US |
dc.identifier.doi | doi:10.1093/imrn/rnu233 | - |
dc.date.eissued | 2014-12-22 | en_US |
dc.identifier.eissn | 1687-0247 | - |
pu.type.symplectic | http://www.symplectic.co.uk/publications/atom-terms/1.0/journal-article | en_US |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
1407.7303v1.pdf | 93.15 kB | Adobe PDF | View/Download |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.