Skip to main content

Second-order perturbations of Kerr black holes: Formalism and reconstruction of the first-order metric

Author(s): Loutrel, Nicholas; Ripley, Justin L; Giorgi, Elena; Pretorius, Frans

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1pc2t88c
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLoutrel, Nicholas-
dc.contributor.authorRipley, Justin L-
dc.contributor.authorGiorgi, Elena-
dc.contributor.authorPretorius, Frans-
dc.date.accessioned2024-03-11T21:48:11Z-
dc.date.available2024-03-11T21:48:11Z-
dc.identifier.citationLoutrel, Nicholas, Ripley, Justin L, Giorgi, Elena, Pretorius, Frans. (Second-order perturbations of Kerr black holes: Formalism and reconstruction of the first-order metric. Physical Review D, 103 (10), 10.1103/physrevd.103.104017en_US
dc.identifier.issn2470-0010-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1pc2t88c-
dc.description.abstractMotivated by gravitational wave observations of binary black hole mergers, we present a procedure to compute the leading-order nonlinear gravitational wave interactions around a Kerr black hole. We describe the formalism used to derive the equations for second-order perturbations. We develop a procedure that allows us to reconstruct the first-order metric perturbation solely from knowledge of the solution to the first-order Teukolsky equation, without the need of Hertz potentials. Finally, we illustrate this metric reconstruction procedure in the asymptotic limit for the first-order quasinormal modes of Kerr. In a companion paper [J. L. Ripley et al., Phys. Rev. D 103, 104018 (2021)] we present a numerical implementation of these ideas.en_US
dc.languageenen_US
dc.language.isoen_USen_US
dc.relation.ispartofPhysical Review Den_US
dc.rightsAuthor's manuscripten_US
dc.titleSecond-order perturbations of Kerr black holes: Formalism and reconstruction of the first-order metricen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1103/physrevd.103.104017-
dc.date.eissued2021-05-18en_US
dc.identifier.eissn2470-0029-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
2008.11770.pdf804.67 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.