Skip to main content

Characterizing unknown systematics in large scale structure surveys

Author(s): Agarwal, N; Ho, S; Myers, AD; Seo, HJ; Ross, AJ; et al

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1p42z
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAgarwal, N-
dc.contributor.authorHo, S-
dc.contributor.authorMyers, AD-
dc.contributor.authorSeo, HJ-
dc.contributor.authorRoss, AJ-
dc.contributor.authorBahcall, Neta A.-
dc.contributor.authorBrinkmann, J-
dc.contributor.authorEisenstein, DJ-
dc.contributor.authorMuna, D-
dc.contributor.authorPalanque-Delabrouille, N-
dc.contributor.authorPâris, I-
dc.contributor.authorPetitjean, P-
dc.contributor.authorSchneider, DP-
dc.contributor.authorStreblyanska, A-
dc.contributor.authorWeaver, BA-
dc.contributor.authorYèche, Christophe-
dc.date.accessioned2019-04-10T19:31:49Z-
dc.date.available2019-04-10T19:31:49Z-
dc.date.issued2014-04en_US
dc.identifier.citationAgarwal, N, Ho, S, Myers, AD, Seo, HJ, Ross, AJ, Bahcall, N, Brinkmann, J, Eisenstein, DJ, Muna, D, Palanque-Delabrouille, N, Pâris, I, Petitjean, P, Schneider, DP, Streblyanska, A, Weaver, BA, Yèche, C. (2014). Characterizing unknown systematics in large scale structure surveys. Journal of Cosmology and Astroparticle Physics, 2014 (4), 10.1088/1475-7516/2014/04/007en_US
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1p42z-
dc.description.abstractPhotometric large scale structure (LSS) surveys probe the largest volumes in the Universe, but are inevitably limited by systematic uncertainties. Imperfect photometric calibration leads to biases in our measurements of the density fields of LSS tracers such as galaxies and quasars, and as a result in cosmological parameter estimation. Earlier studies have proposed using cross-correlations between different redshift slices or cross-correlations between different surveys to reduce the effects of such systematics. In this paper we develop a method to characterize unknown systematics. We demonstrate that while we do not have sufficient information to correct for unknown systematics in the data, we can obtain an estimate of their magnitude. We define a parameter to estimate contamination from unknown systematics using cross-correlations between different redshift slices and propose discarding bins in the angular power spectrum that lie outside a certain contamination tolerance level. We show that this method improves estimates of the bias using simulated data and further apply it to photometric luminous red galaxies in the Sloan Digital Sky Survey as a case study. © 2014 IOP Publishing Ltd and Sissa Medialab srl.en_US
dc.language.isoen_USen_US
dc.relation.ispartofJournal of Cosmology and Astroparticle Physicsen_US
dc.rightsAuthor's manuscripten_US
dc.titleCharacterizing unknown systematics in large scale structure surveysen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1088/1475-7516/2014/04/007-
dc.date.eissued2014-04-07en_US
dc.identifier.eissn1475-7516-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
1309.2954v2.pdf1.31 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.