Skip to main content

Splicing integer framed knot complements and bordered Heegaard Floer homology

Author(s): Hanselman, Jonathan

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1nz80q3w
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHanselman, Jonathan-
dc.date.accessioned2023-12-27T18:48:13Z-
dc.date.available2023-12-27T18:48:13Z-
dc.date.issued2017en_US
dc.identifier.citationHanselman, Jonathan. (2017). Splicing integer framed knot complements and bordered Heegaard Floer homology. QUANTUM TOPOLOGY, 8 (715 - 748. doi:10.4171/QT/100en_US
dc.identifier.issn1663-487X-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1nz80q3w-
dc.description.abstractWe consider the following question: when is the manifold obtained by gluing together two knot complements an L-space? Hedden and Levine proved that splicing 0-framed complements of nontrivial knots never produces an L-space. We extend this result to allow for arbitrary integer framings. We find that splicing two integer framed nontrivial knot complements only produces an L-space if both knots are L-space knots and the framings lie in an appropriate range. The proof involves a careful analysis of the bordered Heegaard Floer invariants of each knot complement.en_US
dc.format.extent715 - 748en_US
dc.language.isoen_USen_US
dc.relation.ispartofQUANTUM TOPOLOGYen_US
dc.rightsAuthor's manuscripten_US
dc.titleSplicing integer framed knot complements and bordered Heegaard Floer homologyen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.4171/QT/100-
dc.date.eissued2017-12-06en_US
dc.identifier.eissn1664-073X-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
1409.1912.pdf507.82 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.