Skip to main content

Critical properties of the measurement-induced transition in random quantum circuits

Author(s): Zabalo, Aidan; Gullans, Michael J; Wilson, Justin H; Gopalakrishnan, Sarang; Huse, David A; et al

To refer to this page use:
Abstract: We numerically study the measurement-driven quantum phase transition of Haar-random quantum circuits in 1 + 1 dimensions. By analyzing the tripartite mutual information we are able to make a precise estimate of the critical measurement rate p(c) = 0.17(1). We extract estimates for the associated bulk critical exponents that are consistent with the values for percolation, as well as those for stabilizer circuits, but differ from previous estimates for the Haar-random case. Our estimates of the surface order parameter exponent appear different from those for stabilizer circuits or percolation, but we cannot definitively rule out the scenario where all exponents in the three cases match. Moreover, in the Haar case the prefactor for the entanglement entropies S-n depends strongly on the Renyi index n; for stabilizer circuits and percolation this dependence is absent. Results on stabilizer circuits are used to guide our study and identify measures with weak finite-size effects. We discuss how our numerical estimates constrain theories of the transition.
Publication Date: Feb-2020
Electronic Publication Date: 20-Feb-2020
Citation: Zabalo, Aidan, Gullans, Michael J, Wilson, Justin H, Gopalakrishnan, Sarang, Huse, David A, Pixley, JH. (2020). Critical properties of the measurement-induced transition in random quantum circuits. PHYSICAL REVIEW B, 101 (10.1103/PhysRevB.101.060301
DOI: doi:10.1103/PhysRevB.101.060301
ISSN: 2469-9950
EISSN: 2469-9969
Type of Material: Journal Article
Journal/Proceeding Title: PHYSICAL REVIEW B
Version: Final published version. Article is made available in OAR by the publisher's permission or policy.

Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.