Skip to main content

Extracellular-matrix-mediated osmotic pressure drives Vibrio cholerae biofilm expansion and cheater exclusion.

Author(s): Yan, Jing; Nadell, Carey D; Stone, Howard A; Wingreen, Ned S; Bassler, Bonnie L

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1nv2k
Full metadata record
DC FieldValueLanguage
dc.contributor.authorYan, Jing-
dc.contributor.authorNadell, Carey D-
dc.contributor.authorStone, Howard A-
dc.contributor.authorWingreen, Ned S-
dc.contributor.authorBassler, Bonnie L-
dc.date.accessioned2020-02-25T20:11:09Z-
dc.date.available2020-02-25T20:11:09Z-
dc.date.issued2017-08-23en_US
dc.identifier.citationYan, Jing, Nadell, Carey D, Stone, Howard A, Wingreen, Ned S, Bassler, Bonnie L. (2017). Extracellular-matrix-mediated osmotic pressure drives Vibrio cholerae biofilm expansion and cheater exclusion.. Nature communications, 8 (1), 327 - ?. doi:10.1038/s41467-017-00401-1en_US
dc.identifier.issn2041-1723-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1nv2k-
dc.description.abstractBiofilms, surface-attached communities of bacteria encased in an extracellular matrix, are a major mode of bacterial life. How the material properties of the matrix contribute to biofilm growth and robustness is largely unexplored, in particular in response to environmental perturbations such as changes in osmotic pressure. Here, using Vibrio cholerae as our model organism, we show that during active cell growth, matrix production enables biofilm-dwelling bacterial cells to establish an osmotic pressure difference between the biofilm and the external environment. This pressure difference promotes biofilm expansion on nutritious surfaces by physically swelling the colony, which enhances nutrient uptake, and enables matrix-producing cells to outcompete non-matrix-producing cheaters via physical exclusion. Osmotic pressure together with crosslinking of the matrix also controls the growth of submerged biofilms and their susceptibility to invasion by planktonic cells. As the basic physicochemical principles of matrix crosslinking and osmotic swelling are universal, our findings may have implications for other biofilm-forming bacterial species.en_US
dc.format.extent1 - 11en_US
dc.languageengen_US
dc.language.isoenen_US
dc.relation.ispartofNature communicationsen_US
dc.rightsFinal published version. This is an open access article.en_US
dc.titleExtracellular-matrix-mediated osmotic pressure drives Vibrio cholerae biofilm expansion and cheater exclusion.en_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1038/s41467-017-00401-1-
dc.identifier.eissn2041-1723-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
OA_Extracellular_matrix_mediated_osmotic_pressure_2017.pdf3.37 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.