Skip to main content

On a notion of "Galois closure" for extensions of rings

Author(s): Bhargava, Manjul; Satriano, Matthew

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1ns89
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBhargava, Manjul-
dc.contributor.authorSatriano, Matthew-
dc.date.accessioned2017-11-21T19:03:42Z-
dc.date.available2017-11-21T19:03:42Z-
dc.date.issued2014en_US
dc.identifier.citationM. BHARGAVA and M. SATRIANO , On a notion of “Galois closure” for extensions of rings ,J.Eur.Math.Soc.(JEMS) 16 (2014), 1881–1913. MR 3273311. DOI 10.4171/JEMS/478. (1885, 1886)en_US
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1ns89-
dc.description.abstractWe introduce a notion of "Galois closure" for extensions of rings. We show that the notion agrees with the usual notion of Galois closure in the case of an S_n degree n extension of fields. Moreover, we prove a number of properties of this construction; for example, we show that it is functorial and respects base change. We also investigate the behavior of this Galois closure construction for various natural classes of ring extensions.en_US
dc.format.extent1881–1913en_US
dc.language.isoenen_US
dc.relation.ispartofJOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETYen_US
dc.rightsAuthor's manuscripten_US
dc.titleOn a notion of "Galois closure" for extensions of ringsen_US
dc.typeJournal Articleen_US
dc.date.eissued2014en_US
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
1006.2562v3.pdf327.35 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.