Skip to main content

Exceptional hyperbolic 3-manifolds

Author(s): Gabai, David; Trnkova, Maria

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1nq07
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGabai, David-
dc.contributor.authorTrnkova, Maria-
dc.date.accessioned2017-11-21T19:41:08Z-
dc.date.available2017-11-21T19:41:08Z-
dc.date.issued2015en_US
dc.identifier.citationGabai, David, Trnkova, Maria. (2015). Exceptional hyperbolic 3-manifolds. COMMENTARII MATHEMATICI HELVETICI, 90 (703 - 730. doi:10.4171/CMH/368en_US
dc.identifier.issn0010-2571-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1nq07-
dc.description.abstractWe correct and complete a conjecture of D. Gabai, R. Meyerhoff and N. Thurston on the classification and properties of thin tubed closed hyperbolic 3-manifolds. We additionally show that if N is a closed hyperbolic 3-manifold, then either N = Vol3 or N contains a closed geodesic that is the core of an embedded tube of radius log (3)/2.en_US
dc.format.extent703 - 730en_US
dc.language.isoenen_US
dc.relation.ispartofCOMMENTARII MATHEMATICI HELVETICIen_US
dc.rightsAuthor's manuscripten_US
dc.titleExceptional hyperbolic 3-manifoldsen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.4171/CMH/368-
dc.date.eissued2015en_US
dc.identifier.eissn1420-8946-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
1305.4565v1.pdf428.06 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.