Skip to main content

SPECTRAL CLASSIFICATION AND REDSHIFT MEASUREMENT FOR THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY

Author(s): Bolton, Adam S; Schlegel, David J; Aubourg, Eric; Bailey, Stephen; Bhardwaj, Vaishali; et al

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1ng4gr46
Abstract: We describe the automated spectral classification, redshift determination, and parameter measurement pipeline in use for the Baryon Oscillation Spectroscopic Survey (BOSS) of the Sloan Digital Sky Survey III (SDSS-III) as of the survey’s ninth data release (DR9), encompassing 831,000 moderate-resolution optical spectra. We give a review of the algorithms employed, and describe the changes to the pipeline that have been implemented for BOSS relative to previous SDSS-I/II versions, including new sets of stellar, galaxy, and quasar redshift templates. For the color-selected “CMASS” sample of massive galaxies at redshift 0.4 less than or similar to z <= 0.8 targeted by BOSS for the purposes of large-scale cosmological measurements, the pipeline achieves an automated classification success rate of 98.7% and confirms 95.4% of unique CMASS targets as galaxies (with the balance being mostly M stars). Based on visual inspections of a subset of BOSS galaxies, we find that approximately 0.2% of confidently reported CMASS sample classifications and redshifts are incorrect, and about 0.4% of all CMASS spectra are objects unclassified by the current algorithm which are potentially recoverable. The BOSS pipeline confirms that similar to 51.5% of the quasar targets have quasar spectra, with the balance mainly consisting of stars and low signal-to-noise spectra. Statistical (as opposed to systematic) redshift errors propagated from photon noise are typically a few tens of km s(-1) for both galaxies and quasars, with a significant tail to a few hundreds of km s(-1) for quasars. We test the accuracy of these statistical redshift error estimates using repeat observations, finding them underestimated by a factor of 1.19-1.34 for galaxies and by a factor of two for quasars. We assess the impact of sky-subtraction quality, signal-to-noise ratio, and other factors on galaxy redshift success. Finally, we document known issues with the BOSS DR9 spectroscopic data set and describe directions of ongoing development.
Publication Date: Nov-2012
Citation: Bolton, Adam S, Schlegel, David J, Aubourg, Eric, Bailey, Stephen, Bhardwaj, Vaishali, Brownstein, Joel R, Burles, Scott, Chen, Yan-Mei, Dawson, Kyle, Eisenstein, Daniel J, Gunn, James E, Knapp, GR, Loomis, Craig P, Lupton, Robert H, Maraston, Claudia, Muna, Demitri, Myers, Adam D, Olmstead, Matthew D, Padmanabhan, Nikhil, Paris, Isabelle, Percival, Will J, Petitjean, Patrick, Rockosi, Constance M, Ross, Nicholas P, Schneider, Donald P, Shu, Yiping, Strauss, Michael A, Thomas, Daniel, Tremonti, Christy A, Wake, David A, Weaver, Benjamin A, Wood-Vasey, W Michael. (2012). SPECTRAL CLASSIFICATION AND REDSHIFT MEASUREMENT FOR THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY. ASTRONOMICAL JOURNAL, 144 (10.1088/0004-6256/144/5/144
DOI: doi:10.1088/0004-6256/144/5/144
ISSN: 0004-6256
Related Item: https://ui.adsabs.harvard.edu/abs/2012AJ....144..144B/abstract
Type of Material: Journal Article
Journal/Proceeding Title: ASTRONOMICAL JOURNAL
Version: Final published version. Article is made available in OAR by the publisher's permission or policy.



Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.