Skip to main content

The structure of Sobolev extension operators

Author(s): Fefferman, Charles L.; Israel, Arie; Luli, Garving K

To refer to this page use:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFefferman, Charles L.-
dc.contributor.authorIsrael, Arie-
dc.contributor.authorLuli, Garving K-
dc.identifier.citationFefferman, Charles, Israel, Arie, Luli, Garving K. (2014). The structure of Sobolev extension operators. REVISTA MATEMATICA IBEROAMERICANA, 30 (419 - 429. doi:10.4171/RMI/787en_US
dc.description.abstractLet L-m,L-p (R-n) denote the Sobolev space of functions whose m-th derivatives lie in L-p (R-n), and assume that p > n. For E subset of R-n, denote by L-m,L-p (E) the space of restrictions to E of functions F is an element of L-m,L-p (R-n). It is known that there exist bounded linear maps T : L-m,L-p (E) -> L-m,L-p (R-n) such that T f = f on E for any f is an element of L-m,L-p (E). We show that T cannot have a simple form called “bounded depth”.en_US
dc.format.extent419 - 429en_US
dc.rightsAuthor's manuscripten_US
dc.titleThe structure of Sobolev extension operatorsen_US
dc.typeJournal Articleen_US

Files in This Item:
File Description SizeFormat 
1206.1979v2.pdf152.62 kBAdobe PDFView/Download

Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.