The structure of Sobolev extension operators
Author(s): Fefferman, Charles L.; Israel, Arie; Luli, Garving K
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr1n76d
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Fefferman, Charles L. | - |
dc.contributor.author | Israel, Arie | - |
dc.contributor.author | Luli, Garving K | - |
dc.date.accessioned | 2019-12-10T18:36:53Z | - |
dc.date.available | 2019-12-10T18:36:53Z | - |
dc.date.issued | 2014 | en_US |
dc.identifier.citation | Fefferman, Charles, Israel, Arie, Luli, Garving K. (2014). The structure of Sobolev extension operators. REVISTA MATEMATICA IBEROAMERICANA, 30 (419 - 429. doi:10.4171/RMI/787 | en_US |
dc.identifier.issn | 0213-2230 | - |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/pr1n76d | - |
dc.description.abstract | Let L-m,L-p (R-n) denote the Sobolev space of functions whose m-th derivatives lie in L-p (R-n), and assume that p > n. For E subset of R-n, denote by L-m,L-p (E) the space of restrictions to E of functions F is an element of L-m,L-p (R-n). It is known that there exist bounded linear maps T : L-m,L-p (E) -> L-m,L-p (R-n) such that T f = f on E for any f is an element of L-m,L-p (E). We show that T cannot have a simple form called “bounded depth”. | en_US |
dc.format.extent | 419 - 429 | en_US |
dc.language.iso | en_US | en_US |
dc.relation.ispartof | REVISTA MATEMATICA IBEROAMERICANA | en_US |
dc.rights | Author's manuscript | en_US |
dc.title | The structure of Sobolev extension operators | en_US |
dc.type | Journal Article | en_US |
dc.identifier.doi | doi:10.4171/RMI/787 | - |
dc.date.eissued | 2014-07-08 | en_US |
pu.type.symplectic | http://www.symplectic.co.uk/publications/atom-terms/1.0/journal-article | en_US |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
1206.1979v2.pdf | 152.62 kB | Adobe PDF | View/Download |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.