Skip to main content

Graphs with No Induced Five-Vertex Path or Antipath

Author(s): Chudnovsky, Maria; Esperet, Louis; Lemoine, Laetitia; Maceli, Peter; Maffray, Frédéric; et al

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1mk78
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChudnovsky, Maria-
dc.contributor.authorEsperet, Louis-
dc.contributor.authorLemoine, Laetitia-
dc.contributor.authorMaceli, Peter-
dc.contributor.authorMaffray, Frédéric-
dc.contributor.authorPenev, Irena-
dc.date.accessioned2017-04-04T20:16:08Z-
dc.date.available2017-04-04T20:16:08Z-
dc.date.issued2017-03en_US
dc.identifier.citationChudnovsky, Maria, Esperet, Louis, Lemoine, Laetitia, Maceli, Peter, Maffray, Frédéric, Penev, Irena. (2017). Graphs with No Induced Five-Vertex Path or Antipath. Journal of Graph Theory, 84 (3), 221 - 232. doi:10.1002/jgt.22022en_US
dc.identifier.issn0364-9024-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1mk78-
dc.description.abstractWe prove that a graph G contains no induced math formula-vertex path and no induced complement of a math formula-vertex path if and only if G is obtained from 5-cycles and split graphs by repeatedly applying the following operations: substitution, split unification, and split unification in the complement, where split unification is a new class-preserving operation introduced here.en_US
dc.format.extent221 - 232en_US
dc.language.isoen_USen_US
dc.relation.ispartofJournal of Graph Theoryen_US
dc.rightsAuthor's manuscripten_US
dc.titleGraphs with No Induced Five-Vertex Path or Antipathen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1002/jgt.22022-
dc.date.eissued2016-02-12en_US
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
1410.0871v2.pdf335.83 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.