Sparse Nonparametric Graphical Models
Author(s): Lafferty, John; Liu, Han; Wasserman, Larry
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr1mk26
Abstract: | We present some nonparametric methods for graphical modeling. In the discrete case, where the data are binary or drawn from a finite alphabet, Markov random fields are already essentially nonparametric, since the cliques can take only a finite number of values. Continuous data are different. The Gaussian graphical model is the standard parametric model for continuous data, but it makes distributional assumptions that are often unrealistic. We discuss two approaches to building more flexible graphical models. One allows arbitrary graphs and a nonparametric extension of the Gaussian; the other uses kernel density estimation and restricts the graphs to trees and forests. Examples of both methods are presented. We also discuss possible future research directions for nonparametric graphical modeling. |
Publication Date: | 2012 |
Citation: | Lafferty, John, Han Liu, and Larry Wasserman. "Sparse nonparametric graphical models." Statistical Science 27, no. 4 (2012): 519-537. doi:10.1214/12-STS391 |
DOI: | doi:10.1214/12-STS391 |
ISSN: | 0883-4237 |
EISSN: | 2168-8745 |
Pages: | 519 - 537 |
Type of Material: | Journal Article |
Journal/Proceeding Title: | Statistical Science |
Version: | Final published version. Article is made available in OAR by the publisher's permission or policy. |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.