Skip to main content

Inference in Linear Regression Models with Many Covariates and Heteroscedasticity

Author(s): Cattaneo, Matias D; Jansson, M; Newey, WK

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1mc55
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCattaneo, Matias D-
dc.contributor.authorJansson, M-
dc.contributor.authorNewey, WK-
dc.date.accessioned2021-10-11T14:17:35Z-
dc.date.available2021-10-11T14:17:35Z-
dc.date.issued2018-07-03en_US
dc.identifier.citationCattaneo, MD, Jansson, M, Newey, WK. (2018). Inference in Linear Regression Models with Many Covariates and Heteroscedasticity. Journal of the American Statistical Association, 113 (523), 1350 - 1361. doi:10.1080/01621459.2017.1328360en_US
dc.identifier.issn0162-1459-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1mc55-
dc.description.abstract© 2018, © 2018 American Statistical Association. The linear regression model is widely used in empirical work in economics, statistics, and many other disciplines. Researchers often include many covariates in their linear model specification in an attempt to control for confounders. We give inference methods that allow for many covariates and heteroscedasticity. Our results are obtained using high-dimensional approximations, where the number of included covariates is allowed to grow as fast as the sample size. We find that all of the usual versions of Eicker–White heteroscedasticity consistent standard error estimators for linear models are inconsistent under this asymptotics. We then propose a new heteroscedasticity consistent standard error formula that is fully automatic and robust to both (conditional) heteroscedasticity of unknown form and the inclusion of possibly many covariates. We apply our findings to three settings: parametric linear models with many covariates, linear panel models with many fixed effects, and semiparametric semi-linear models with many technical regressors. Simulation evidence consistent with our theoretical results is provided, and the proposed methods are also illustrated with an empirical application. Supplementary materials for this article are available online.en_US
dc.format.extent1350 - 1361en_US
dc.language.isoen_USen_US
dc.relation.ispartofJournal of the American Statistical Associationen_US
dc.rightsAuthor's manuscripten_US
dc.titleInference in Linear Regression Models with Many Covariates and Heteroscedasticityen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1080/01621459.2017.1328360-
dc.identifier.eissn1537-274X-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
Inference in Linear Regression Models with Many Covariates and Heteroscedasticity.pdf321.46 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.