Matrix product state representation of non-Abelian quasiholes
Author(s): Wu, Yang-Le; Estienne, B; Regnault, N; Bernevig, Bogdan A.
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr1m23x
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Wu, Yang-Le | - |
dc.contributor.author | Estienne, B | - |
dc.contributor.author | Regnault, N | - |
dc.contributor.author | Bernevig, Bogdan A. | - |
dc.date.accessioned | 2020-10-30T19:20:33Z | - |
dc.date.available | 2020-10-30T19:20:33Z | - |
dc.date.issued | 2015-07-09 | en_US |
dc.identifier.citation | Wu, Yang-Le, Estienne, B, Regnault, N, Bernevig, B Andrei. (2015). Matrix product state representation of non-Abelian quasiholes. PHYSICAL REVIEW B, 92 (10.1103/PhysRevB.92.045109 | en_US |
dc.identifier.issn | 1098-0121 | - |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/pr1m23x | - |
dc.description.abstract | We provide a detailed explanation of the formalism necessary to constructmatrix product states for non-Abelian quasiholes in fractional quantum Hall model states. Our construction yields an efficient representation of the wave functions with conformal-block normalization and monodromy, and complements the matrix product state representation of fractional quantum Hall ground states. | en_US |
dc.language.iso | en_US | en_US |
dc.relation.ispartof | PHYSICAL REVIEW B | en_US |
dc.rights | Final published version. Article is made available in OAR by the publisher's permission or policy. | en_US |
dc.title | Matrix product state representation of non-Abelian quasiholes | en_US |
dc.type | Journal Article | en_US |
dc.identifier.doi | doi:10.1103/PhysRevB.92.045109 | - |
dc.date.eissued | 2015-07-09 | en_US |
dc.identifier.eissn | 1550-235X | - |
pu.type.symplectic | http://www.symplectic.co.uk/publications/atom-terms/1.0/journal-article | en_US |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
PhysRevB.92.045109.pdf | 1.84 MB | Adobe PDF | View/Download |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.