Skip to main content

On Fractional GJMS Operators

Author(s): Case, Jeffrey S; Chang, Sun-Yung A.

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1m15c
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCase, Jeffrey S-
dc.contributor.authorChang, Sun-Yung A.-
dc.date.accessioned2019-10-09T19:47:57Z-
dc.date.available2019-10-09T19:47:57Z-
dc.date.issued2016-06en_US
dc.identifier.citationCase, Jeffrey S, Chang, Sun-Yung Alice. (2016). On Fractional GJMS Operators. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 69 (1017 - 1061. doi:10.1002/cpa.21564en_US
dc.identifier.issn0010-3640-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1m15c-
dc.description.abstractWe describe a new interpretation of the fractional GJMS operators as generalized Dirichlet-to-Neumann operators associated to weighted GJMS operators on naturally associated smooth metric measure spaces. This gives a geometric interpretation of the Caffarelli-Silvestre extension for (-) when (0,1), and both a geometric interpretation and a curved analogue of the higher-order extension found by R. Yang for (-) when >1. We give three applications of this correspondence. First, we exhibit some energy identities for the fractional GJMS operators in terms of energies in the compactified Poincare-Einstein manifold, including an interpretation as a renormalized energy. Second, for (1,2), we show that if the scalar curvature and the fractional Q-curvature Q(2) of the boundary are nonnegative, then the fractional GJMS operator P-2 is nonnegative. Third, by assuming additionally that Q(2) is not identically zero, we show that P-2 satisfies a strong maximum principle.(c) 2016 Wiley Periodicals, Inc.en_US
dc.format.extent1017 - 1061en_US
dc.language.isoen_USen_US
dc.relation.ispartofCOMMUNICATIONS ON PURE AND APPLIED MATHEMATICSen_US
dc.rightsAuthor's manuscripten_US
dc.titleOn Fractional GJMS Operatorsen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1002/cpa.21564-
dc.date.eissued2015-02-09en_US
dc.identifier.eissn1097-0312-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
1406.1846.pdf495.89 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.