To refer to this page use:
http://arks.princeton.edu/ark:/88435/pr1m09n
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ghosh, Amit | - |
dc.contributor.author | Reznikov, Andre | - |
dc.contributor.author | Sarnak, Peter C | - |
dc.date.accessioned | 2018-07-20T15:10:08Z | - |
dc.date.available | 2018-07-20T15:10:08Z | - |
dc.date.issued | 2017-10 | en_US |
dc.identifier.citation | Ghosh, Amit, Reznikov, Andre, Sarnak, Peter. (2017). NODAL DOMAINS OF MAASS FORMS, II. AMERICAN JOURNAL OF MATHEMATICS, 139 (1395 - 1447. doi:10.1353/ajm.2017.0035 | en_US |
dc.identifier.issn | 0002-9327 | - |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/pr1m09n | - |
dc.description.abstract | In Part I we gave a polynomial growth lower-bound for the number of nodal domains of a Hecke-Maass cuspform in a compact part of the modular surface, assuming a LindeRif hypothesis. That was a consequence of a topological argument and known subconvexity estimates, together with new sharp lower-bound restriction theorems for the Maass forms. This paper deals with the same question for general (compact or not) arithmetic surfaces which have a reflective symmetry. The topological argument is extended and representation theoretic methods are needed for the restriction theorems, together with results of Waldspurger. Various explicit examples are given and studied. | en_US |
dc.format.extent | 1395 - 1447 | en_US |
dc.language.iso | en_US | en_US |
dc.relation.ispartof | AMERICAN JOURNAL OF MATHEMATICS | en_US |
dc.rights | Author's manuscript | en_US |
dc.title | NODAL DOMAINS OF MAASS FORMS, II | en_US |
dc.type | Journal Article | en_US |
dc.identifier.doi | doi:10.1353/ajm.2017.0035 | - |
dc.date.eissued | 2017-10 | en_US |
dc.identifier.eissn | 1080-6377 | - |
pu.type.symplectic | http://www.symplectic.co.uk/publications/atom-terms/1.0/journal-article | en_US |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
1510.02963.pdf | 1.17 MB | Adobe PDF | View/Download |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.