Skip to main content

NODAL DOMAINS OF MAASS FORMS, II

Author(s): Ghosh, Amit; Reznikov, Andre; Sarnak, Peter C

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1m09n
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGhosh, Amit-
dc.contributor.authorReznikov, Andre-
dc.contributor.authorSarnak, Peter C-
dc.date.accessioned2018-07-20T15:10:08Z-
dc.date.available2018-07-20T15:10:08Z-
dc.date.issued2017-10en_US
dc.identifier.citationGhosh, Amit, Reznikov, Andre, Sarnak, Peter. (2017). NODAL DOMAINS OF MAASS FORMS, II. AMERICAN JOURNAL OF MATHEMATICS, 139 (1395 - 1447. doi:10.1353/ajm.2017.0035en_US
dc.identifier.issn0002-9327-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1m09n-
dc.description.abstractIn Part I we gave a polynomial growth lower-bound for the number of nodal domains of a Hecke-Maass cuspform in a compact part of the modular surface, assuming a LindeRif hypothesis. That was a consequence of a topological argument and known subconvexity estimates, together with new sharp lower-bound restriction theorems for the Maass forms. This paper deals with the same question for general (compact or not) arithmetic surfaces which have a reflective symmetry. The topological argument is extended and representation theoretic methods are needed for the restriction theorems, together with results of Waldspurger. Various explicit examples are given and studied.en_US
dc.format.extent1395 - 1447en_US
dc.language.isoen_USen_US
dc.relation.ispartofAMERICAN JOURNAL OF MATHEMATICSen_US
dc.rightsAuthor's manuscripten_US
dc.titleNODAL DOMAINS OF MAASS FORMS, IIen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1353/ajm.2017.0035-
dc.date.eissued2017-10en_US
dc.identifier.eissn1080-6377-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
1510.02963.pdf1.17 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.