To refer to this page use:
http://arks.princeton.edu/ark:/88435/pr1kz3f
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Han, Fang | - |
dc.contributor.author | Liu, Han | - |
dc.date.accessioned | 2020-04-09T18:43:05Z | - |
dc.date.available | 2020-04-09T18:43:05Z | - |
dc.date.issued | 2014-10 | en_US |
dc.identifier.citation | Han, Fang, and Han Liu. "High dimensional semiparametric scale-invariant principal component analysis." IEEE transactions on pattern analysis and machine intelligence 36, no. 10 (2014): 2016-2032. doi:10.1109/TPAMI.2014.2307886 | en_US |
dc.identifier.issn | 0162-8828 | - |
dc.identifier.uri | https://arxiv.org/abs/1402.4507 | - |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/pr1kz3f | - |
dc.description.abstract | We propose a new high dimensional semiparametric principal component analysis (PCA) method, named Copula Component Analysis (COCA). The semiparametric model assumes that, after unspecified marginally monotone transformations, the distributions are multivariate Gaussian. COCA improves upon PCA and sparse PCA in three aspects: (i) It is robust to modeling assumptions; (ii) It is robust to outliers and data contamination; (iii) It is scale-invariant and yields more interpretable results. We prove that the COCA estimators obtain fast estimation rates and are feature selection consistent when the dimension is nearly exponentially large relative to the sample size. Careful experiments confirm that COCA outperforms sparse PCA on both synthetic and real-world data sets. | en_US |
dc.format.extent | 2016 - 2032 | en_US |
dc.language.iso | en_US | en_US |
dc.relation.ispartof | IEEE Transactions on Pattern Analysis and Machine Intelligence | en_US |
dc.rights | Author's manuscript | en_US |
dc.title | High Dimensional Semiparametric Scale-Invariant Principal Component Analysis | en_US |
dc.type | Journal Article | en_US |
dc.identifier.doi | doi:10.1109/TPAMI.2014.2307886 | - |
dc.identifier.eissn | 1939-3539 | - |
pu.type.symplectic | http://www.symplectic.co.uk/publications/atom-terms/1.0/journal-article | en_US |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
HighDimSemiparamCompAnalysis.pdf | 3.99 MB | Adobe PDF | View/Download |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.