Skip to main content

The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample

Author(s): Alam, Shadab; Ata, Metin; Bailey, Stephen; Beutler, Florian; Bizyaev, Dmitry; et al

To refer to this page use:
Abstract: We present cosmological results from the final galaxy clustering data set of the Baryon Oscillation Spectroscopic Survey, part of the Sloan Digital Sky Survey III. Our combined galaxy sample comprises 1.2 million massive galaxies over an effective area of 9329 deg2 and volume of 18.7 Gpc3, divided into three partially overlapping redshift slices centred at effective redshifts 0.38, 0.51 and 0.61. We measure the angular diameter distance DM and Hubble parameter H from the baryon acoustic oscillation (BAO) method, in combination with a cosmic microwave background prior on the sound horizon scale, after applying reconstruction to reduce non-linear effects on the BAO feature. Using the anisotropic clustering of the pre-reconstruction density field, we measure the product DMH from the Alcock–Paczynski (AP) effect and the growth of structure, quantified by fσ 8(z), from redshift-space distortions (RSD). We combine individual measurements presented in seven companion papers into a set of consensus values and likelihoods, obtaining constraints that are tighter and more robust than those from any one method; in particular, the AP measurement from sub-BAO scales sharpens constraints from post-reconstruction BAOs by breaking degeneracy between DM and H. Combined with Planck 2016 cosmic microwave background measurements, our distance scale measurements simultaneously imply curvature K = 0.0003 ± 0.0026 and a dark energy equation-of-state parameter w = − 1.01 ± 0.06, in strong affirmation of the spatially flat cold dark matter (CDM) model with a cosmological constant ( CDM). Our RSD measurements of fσ 8, at 6 per cent precision, are similarly consistent with this model. When combined with supernova Ia data, we find H0 = 67.3 ± 1.0 km s−1 Mpc−1 even for our most general dark energy model, in tension with some direct measurements. Adding extra relativistic species as a degree of freedom loosens the constraint only slightly, to H0 = 67.8 ± 1.2 km s−1 Mpc−1. Assuming flat CDM, we find m = 0.310 ± 0.005 and H0 = 67.6 ± 0.5 km s−1 Mpc−1, and we find a 95 per cent upper limit of 0.16 eV c−2 on the neutrino mass sum.
Publication Date: 28-Mar-2017
Electronic Publication Date: Sep-2017
Citation: Alam, Shadab, Ata, Metin, Bailey, Stephen, Beutler, Florian, Bizyaev, Dmitry, Blazek, Jonathan A, Bolton, Adam S, Brownstein, Joel R, Burden, Angela, Chuang, Chia-Hsun, Comparat, Johan, Cuesta, Antonio J, Dawson, Kyle S, Eisenstein, Daniel J, Escoffier, Stephanie, Gil-Marín, Héctor, Grieb, Jan Niklas, Hand, Nick, Ho, Shirley, Kinemuchi, Karen, Kirkby, David, Kitaura, Francisco, Malanushenko, Elena, Malanushenko, Viktor, Maraston, Claudia, McBride, Cameron K, Nichol, Robert C, Olmstead, Matthew D, Oravetz, Daniel, Padmanabhan, Nikhil, Palanque-Delabrouille, Nathalie, Pan, Kaike, Pellejero-Ibanez, Marcos, Percival, Will J, Petitjean, Patrick, Prada, Francisco, Price-Whelan, Adrian M, Reid, Beth A, Rodríguez-Torres, Sergio A, Roe, Natalie A, Ross, Ashley J, Ross, Nicholas P, Rossi, Graziano, Rubi no-Martín, Jose Alberto, Saito, Shun, Salazar-Albornoz, Salvador, Samushia, Lado, Sánchez, Ariel G, Satpathy, Siddharth, Schlegel, David J, Schneider, Donald P, Scóccola, Claudia G, Seo, Hee-Jong, Sheldon, Erin S, Simmons, Audrey, Slosar, An vze, Strauss, Michael A, Swanson, Molly EC, Thomas, Daniel, Tinker, Jeremy L, Tojeiro, Rita, Maga na, Mariana Vargas, Vazquez, Jose Alberto, Verde, Licia, Wake, David A, Wang, Yuting, Weinberg, David H, White, Martin, Wood-Vasey, W Michael, Yèche, Christophe, Zehavi, Idit, Zhai, Zhongxu, Zhao, Gong-Bo. (2017). The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample. \mnras, 470 (2617 - 2652. doi:10.1093/mnras/stx721
DOI: doi:10.1093/mnras/stx721
Pages: 2617 - 2652
Type of Material: Journal Article
Journal/Proceeding Title: Monthly Notices of the Royal Astronomical Society
Version: Final published version. Article is made available in OAR by the publisher's permission or policy.

Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.