Skip to main content

Morse index and multiplicity of min-max minimal hypersurfaces

Author(s): Coda Marques, Fernando; Neves, André

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1kt13
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCoda Marques, Fernando-
dc.contributor.authorNeves, André-
dc.date.accessioned2018-07-20T15:10:23Z-
dc.date.available2018-07-20T15:10:23Z-
dc.date.issued2016en_US
dc.identifier.citationMarques, Fernando C, Neves, André. (2016). Morse index and multiplicity of min-max minimal hypersurfaces. Cambridge Journal of Mathematics, 4 (4), 463 - 511. doi:10.4310/CJM.2016.v4.n4.a2en_US
dc.identifier.issn2168-0930-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1kt13-
dc.description.abstractThe Min-max Theory for the area functional, started by Almgren in the early 1960s and greatly improved by Pitts in 1981, was left incomplete because it gave no Morse index estimate for the minmax minimal hypersurface. We advance the theory further and prove the first general Morse index bounds for minimal hypersurfaces produced by it. We also settle the multiplicity problem for the classical case of one-parameter sweepouts.en_US
dc.format.extent463 - 511en_US
dc.language.isoenen_US
dc.relation.ispartofCambridge Journal of Mathematicsen_US
dc.rightsAuthor's manuscripten_US
dc.titleMorse index and multiplicity of min-max minimal hypersurfacesen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.4310/CJM.2016.v4.n4.a2-
dc.date.eissued2016en_US
dc.identifier.eissn2168-0949-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
1512.06460.pdf357.02 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.