Skip to main content

In the Crosshair: Astrometric Exoplanet Detection with WFIRST’s Diffraction Spikes

Author(s): Melchior, Peter M; Spergel, David N; Lanz, Arianna

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1kp7tr1z
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMelchior, Peter M-
dc.contributor.authorSpergel, David N-
dc.contributor.authorLanz, Arianna-
dc.date.accessioned2022-01-25T15:01:52Z-
dc.date.available2022-01-25T15:01:52Z-
dc.date.issued2018-02en_US
dc.identifier.citationMelchior, Peter, Spergel, David, Lanz, Arianna. (2018). In the Crosshair: Astrometric Exoplanet Detection with WFIRST’s Diffraction Spikes. ASTRONOMICAL JOURNAL, 155 (10.3847/1538-3881/aaa422en_US
dc.identifier.issn0004-6256-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1kp7tr1z-
dc.description.abstractWFIRST will conduct a coronagraphic program that characterizes the atmospheres of planets around bright nearby stars. When observed with the WFIRST Wide Field Camera, these stars will saturate the detector and produce very strong diffraction spikes. In this paper, we forecast the astrometric precision that WFIRST can achieve by centering on the diffraction spikes of highly saturated stars. This measurement principle is strongly facilitated by the WFIRST H4RG detectors, which confine excess charges within the potential well of saturated pixels. By adopting a simplified analytical model of the diffraction spike caused by a single support strut obscuring the telescope aperture, integrated over the WFIRST pixel size, we predict the performance of this approach with the Fisher-matrix formalism. We discuss the validity of the model and find that 10 mu as astrometric precision is achievable with a single 100 s exposure of an R-AB = 6 or a J(AB) = 5 star. We discuss observational limitations from the optical distortion correction and pixel-level artifacts, which need to be calibrated at the level of 10-20 mu as so as to not dominate the error budget. To suppress those systematics, we suggest a series of short exposures, dithered by at least several hundred pixels, to reach an effective per-visit astrometric precision better than 10 mu as. If this can be achieved, a dedicated WFIRST GO program will be able to detect Earth-mass exoplanets with orbital periods of greater than or similar to 1 year around stars within a few pc as well as Neptune-like planets with shorter periods or around more massive or distant stars. Such a program will also enable mass measurements of many anticipated direct-imaging exoplanet targets of the WFIRST coronagraph and a “starshade” occulter.en_US
dc.language.isoen_USen_US
dc.relationhttps://ui.adsabs.harvard.edu/abs/2018AJ....155..102M/abstracten_US
dc.relation.ispartofASTRONOMICAL JOURNALen_US
dc.rightsFinal published version. Article is made available in OAR by the publisher's permission or policy.en_US
dc.titleIn the Crosshair: Astrometric Exoplanet Detection with WFIRST’s Diffraction Spikesen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.3847/1538-3881/aaa422-
dc.date.eissued2018-02-01en_US
dc.identifier.eissn1538-3881-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
ajaaa422.pdf731.62 kBAdobe PDFView/Download
ajaaa422.zip2.09 kBUnknownView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.