Galaxy bias from the Dark Energy Survey Science Verification data: combining galaxy density maps and weak lensing maps
Author(s): Chang, C; Pujol, A; Gaztanaga, E; Amara, A; Refregier, A; et al
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr1kk94b91
Abstract: | We measure the redshift evolution of galaxy bias for a magnitude-limited galaxy sample by combining the galaxy density maps and weak lensing shear maps for a similar to 116 deg(2) area of the Dark Energy Survey (DES) Science Verification (SV) data. This method was first developed in Amara et al. and later re-examined in a companion paper with rigorous simulation tests and analytical treatment of tomographic measurements. In this work we apply this method to the DES SV data and measure the galaxy bias for a i < 22.5 galaxy sample. We find the galaxy bias and 1 sigma error bars in four photometric redshift bins to be 1.12 +/- 0.19 (z = 0.2-0.4), 0.97 +/- 0.15 (z = 0.4-0.6), 1.38 +/- 0.39 (z = 0.6-0.8), and 1.45 +/- 0.56 (z = 0.8-1.0). These measurements are consistent at the 2 sigma level with measurements on the same data set using galaxy clustering and cross-correlation of galaxies with cosmic microwave background lensing, with most of the redshift bins consistent within the 1 sigma error bars. In addition, our method provides the only sigma(8) independent constraint among the three. We forward model the main observational effects using mock galaxy catalogues by including shape noise, photo-z errors, and masking effects. We show that our bias measurement from the data is consistent with that expected from simulations. With the forthcoming full DES data set, we expect this method to provide additional constraints on the galaxy bias measurement from more traditional methods. Furthermore, in the process of our measurement, we build up a 3D mass map that allows further exploration of the dark matter distribution and its relation to galaxy evolution. |
Publication Date: | 1-Jul-2016 |
Electronic Publication Date: | 15-Apr-2016 |
Citation: | Chang, C, Pujol, A, Gaztanaga, E, Amara, A, Refregier, A, Bacon, D, Becker, MR, Bonnett, C, Carretero, J, Castander, FJ, Crocce, M, Fosalba, P, Giannantonio, T, Hartley, W, Jarvis, M, Kacprzak, T, Ross, AJ, Sheldon, E, Troxel, MA, Vikram, V, Zuntz, J, Abbott, TMC, Abdalla, FB, Allam, S, Annis, J, Benoit-Levy, A, Bertin, E, Brooks, D, Buckley-Geer, E, Burke, DL, Capozzi, D, Carnero Rosell, A, Carrasco Kind, M, Cunha, CE, D Andrea, CB, da Costa, LN, Desai, S, Diehl, HT, Dietrich, JP, Doel, P, Eifler, TF, Estrada, J, Evrard, AE, Flaugher, B, Frieman, J, Goldstein, DA, Gruen, D, Gruendl, RA, Gutierrez, G, Honscheid, K, Jain, B, James, DJ, Kuehn, K, Kuropatkin, N, Lahav, O, Li, TS, Lima, M, Marshall, JL, Martini, P, Melchior, P, Miller, CJ, Miquel, R, Mohr, JJ, Nichol, RC, Nord, B, Ogando, R, Plazas, AA, Reil, K, Romer, AK, Roodman, A, Rykoff, ES, Sanchez, E, Scarpine, V, Schubnell, M, Sevilla-Noarbe, I, Smith, RC, Soares-Santos, M, Sobreira, F, Suchyta, E, Swanson, MEC, Tarle, G, Thomas, D, Walker, AR. (2016). Galaxy bias from the Dark Energy Survey Science Verification data: combining galaxy density maps and weak lensing maps. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 459 (3203 - 3216. doi:10.1093/mnras/stw861 |
DOI: | doi:10.1093/mnras/stw861 |
ISSN: | 0035-8711 |
EISSN: | 1365-2966 |
Pages: | 3203 - 3216 |
Type of Material: | Journal Article |
Journal/Proceeding Title: | MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY |
Version: | Final published version. Article is made available in OAR by the publisher's permission or policy. |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.