Skip to main content

Simulating Water Residence Time in the Coastal Ocean: A Global Perspective

Author(s): Liu, Xiao; Dunne, John P; Stock, Charles A; Harrison, Matthew J; Adcroft, Alistair; et al

To refer to this page use:
Abstract: Exchanges between coastal and oceanic waters shape both coastal ecosystem processes and signatures that they impart on global biogeochemical cycles. The timescales of these exchanges, however, are poorly represented in current‐generation, coarse‐grid climate models. Here we provide a novel global perspective on coastal residence time (CRT) and its spatio‐temporal variability using a new age tracer implemented in global ocean models. Simulated CRTs range widely from several days in narrow boundary currents to multiple years on broader shelves and in semi‐enclosed seas, in agreement with available observations. Overall, CRT is better characterized in high‐resolution models (1/8° and 1/4°) than in the coarser (1° and 1/2°) versions. This is in large part because coastal and open ocean grid cells are more directly connected in coarse models, prone to erroneous coastal flushing and an underestimated CRT. Additionally, we find that geometric enclosure of a coastal system places an important constraint on CRT.
Publication Date: 20-Nov-2019
Citation: Liu, Xiao, John P. Dunne, Charles A. Stock, Matthew J. Harrison, Alistair Adcroft, and Laure Resplandy. "Simulating Water Residence Time in the Coastal Ocean: A Global Perspective." Geophysical Research Letters 46, no. 23 (2019): 13910-13919. doi:10.1029/2019GL085097.
DOI: doi:10.1029/2019GL085097
ISSN: 0094-8276
EISSN: 1944-8007
Pages: 13910 - 13919
Type of Material: Journal Article
Journal/Proceeding Title: Geophysical Research Letters
Version: Final published version. Article is made available in OAR by the publisher's permission or policy.

Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.