Skip to main content

Global solutions of quasilinear systems of Klein-Gordon equations in 3D

Author(s): Ionescu, Alexandru D; Pausader, Benoit

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1jt0b
Full metadata record
DC FieldValueLanguage
dc.contributor.authorIonescu, Alexandru D-
dc.contributor.authorPausader, Benoit-
dc.date.accessioned2017-11-21T19:42:53Z-
dc.date.available2017-11-21T19:42:53Z-
dc.date.issued2014en_US
dc.identifier.citationIonescu, Alexandru D, Pausader, Benoit. (2014). Global solutions of quasilinear systems of Klein-Gordon equations in 3D. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 16 (2355 - 2431. doi:10.4171/JEMS/489en_US
dc.identifier.issn1435-9855-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1jt0b-
dc.description.abstractWe prove small data global existence and scattering for quasilinear systems of Klein- Gordon equations with different speeds, in dimension three. As an application, we obtain a robust global stability result for the Euler-Maxwell equations for electrons.en_US
dc.format.extent2355 - 2431en_US
dc.language.isoenen_US
dc.relation.ispartofJOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETYen_US
dc.rightsAuthor's manuscripten_US
dc.titleGlobal solutions of quasilinear systems of Klein-Gordon equations in 3Den_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.4171/JEMS/489-
dc.date.eissued2014en_US
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
1208.2661v1.pdf700.65 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.