Global solutions of quasilinear systems of Klein-Gordon equations in 3D
Author(s): Ionescu, Alexandru D; Pausader, Benoit
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr1jt0b
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ionescu, Alexandru D | - |
dc.contributor.author | Pausader, Benoit | - |
dc.date.accessioned | 2017-11-21T19:42:53Z | - |
dc.date.available | 2017-11-21T19:42:53Z | - |
dc.date.issued | 2014 | en_US |
dc.identifier.citation | Ionescu, Alexandru D, Pausader, Benoit. (2014). Global solutions of quasilinear systems of Klein-Gordon equations in 3D. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 16 (2355 - 2431. doi:10.4171/JEMS/489 | en_US |
dc.identifier.issn | 1435-9855 | - |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/pr1jt0b | - |
dc.description.abstract | We prove small data global existence and scattering for quasilinear systems of Klein- Gordon equations with different speeds, in dimension three. As an application, we obtain a robust global stability result for the Euler-Maxwell equations for electrons. | en_US |
dc.format.extent | 2355 - 2431 | en_US |
dc.language.iso | en | en_US |
dc.relation.ispartof | JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY | en_US |
dc.rights | Author's manuscript | en_US |
dc.title | Global solutions of quasilinear systems of Klein-Gordon equations in 3D | en_US |
dc.type | Journal Article | en_US |
dc.identifier.doi | doi:10.4171/JEMS/489 | - |
dc.date.eissued | 2014 | en_US |
pu.type.symplectic | http://www.symplectic.co.uk/publications/atom-terms/1.0/journal-article | en_US |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
1208.2661v1.pdf | 700.65 kB | Adobe PDF | View/Download |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.