Skip to main content

Scale-Invariant Sparse PCA on High-Dimensional Meta-Elliptical Data

Author(s): Han, Fang; Liu, Han

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1js2s
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHan, Fang-
dc.contributor.authorLiu, Han-
dc.date.accessioned2021-10-11T14:16:55Z-
dc.date.available2021-10-11T14:16:55Z-
dc.date.issued2014en_US
dc.identifier.citationHan, Fang, and Han Liu. "Scale-invariant sparse PCA on high-dimensional meta-elliptical data." Journal of the American Statistical Association 109, no. 505 (2014): 275-287. doi:10.1080/01621459.2013.844699en_US
dc.identifier.issn0162-1459-
dc.identifier.urihttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4051512/-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1js2s-
dc.description.abstractWe propose a semiparametric method for conducting scale-invariant sparse principal component analysis (PCA) on high-dimensional non-Gaussian data. Compared with sparse PCA, our method has a weaker modeling assumption and is more robust to possible data contamination. Theoretically, the proposed method achieves a parametric rate of convergence in estimating the parameter of interests under a flexible semiparametric distribution family; computationally, the proposed method exploits a rank-based procedure and is as efficient as sparse PCA; empirically, our method outperforms most competing methods on both synthetic and real-world datasets.en_US
dc.format.extent275 - 287en_US
dc.language.isoen_USen_US
dc.relation.ispartofJournal of the American Statistical Associationen_US
dc.rightsAuthor's manuscripten_US
dc.titleScale-Invariant Sparse PCA on High-Dimensional Meta-Elliptical Dataen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1080/01621459.2013.844699-
dc.identifier.eissn1537-274X-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
SparsePCAMetaEllipticalData.pdf1.65 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.