To refer to this page use:
http://arks.princeton.edu/ark:/88435/pr1js2s
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Han, Fang | - |
dc.contributor.author | Liu, Han | - |
dc.date.accessioned | 2021-10-11T14:16:55Z | - |
dc.date.available | 2021-10-11T14:16:55Z | - |
dc.date.issued | 2014 | en_US |
dc.identifier.citation | Han, Fang, and Han Liu. "Scale-invariant sparse PCA on high-dimensional meta-elliptical data." Journal of the American Statistical Association 109, no. 505 (2014): 275-287. doi:10.1080/01621459.2013.844699 | en_US |
dc.identifier.issn | 0162-1459 | - |
dc.identifier.uri | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4051512/ | - |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/pr1js2s | - |
dc.description.abstract | We propose a semiparametric method for conducting scale-invariant sparse principal component analysis (PCA) on high-dimensional non-Gaussian data. Compared with sparse PCA, our method has a weaker modeling assumption and is more robust to possible data contamination. Theoretically, the proposed method achieves a parametric rate of convergence in estimating the parameter of interests under a flexible semiparametric distribution family; computationally, the proposed method exploits a rank-based procedure and is as efficient as sparse PCA; empirically, our method outperforms most competing methods on both synthetic and real-world datasets. | en_US |
dc.format.extent | 275 - 287 | en_US |
dc.language.iso | en_US | en_US |
dc.relation.ispartof | Journal of the American Statistical Association | en_US |
dc.rights | Author's manuscript | en_US |
dc.title | Scale-Invariant Sparse PCA on High-Dimensional Meta-Elliptical Data | en_US |
dc.type | Journal Article | en_US |
dc.identifier.doi | doi:10.1080/01621459.2013.844699 | - |
dc.identifier.eissn | 1537-274X | - |
pu.type.symplectic | http://www.symplectic.co.uk/publications/atom-terms/1.0/journal-article | en_US |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
SparsePCAMetaEllipticalData.pdf | 1.65 MB | Adobe PDF | View/Download |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.