Skip to main content

Herpesvirus Replication Compartments Originate with Single Incoming Viral Genomes

Author(s): Kobiler, O; Brodersen, P; Taylor, MP; Ludmir, EB; Enquist, LW

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1jq0sv55
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKobiler, O-
dc.contributor.authorBrodersen, P-
dc.contributor.authorTaylor, MP-
dc.contributor.authorLudmir, EB-
dc.contributor.authorEnquist, LW-
dc.date.accessioned2024-03-03T04:44:51Z-
dc.date.available2024-03-03T04:44:51Z-
dc.date.issued2011-12-20en_US
dc.identifier.citationKobiler, O, Brodersen, P, Taylor, MP, Ludmir, EB, Enquist, LW. (2011). Herpesvirus Replication Compartments Originate with Single Incoming Viral Genomes. mBio, 2 (6), e00278-11 - e00278-11. doi:10.1128/mBio.00278-11en_US
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1jq0sv55-
dc.description.abstractPreviously we described a method to estimate the average number of virus genomes expressed in an infected cell. By analyzing the color spectrum of cells infected with a mixture of isogenic pseudorabies virus (PRV) recombinants expressing three fluorophores, we estimated that fewer than seven incoming genomes are expressed, replicated, and packaged into progeny per cell. In this report, we expand this work and describe experiments demonstrating the generality of the method, as well as providing more insight into herpesvirus replication. We used three isogenic PRV recombinants, each expressing a fluorescently tagged VP26 fusion protein (VP26 is a capsid protein) under the viral VP26 late promoter. We calculated a similar finite limit on the number of expressed viral genomes, indicating that this method is independent of the promoter used to transcribe the fluorophore genes, the time of expression of the fluorophore (early versus late), and the insertion site of the fluorophore gene in the PRV genome (UL versus US). Importantly, these VP26 fusion proteins are distributed equally in punctate virion assembly structures in each nucleus, which improves the signal-to-noise ratio when determining the color spectrum of each cell. To understand how the small number of genomes are distributed among the replication compartments, we used a two-color fluorescent in situ hybridization assay. Most viral replication compartments in the nucleus occupy unique nuclear territories, implying that they arose from single genomes. Our experiments suggest a correlation between the small number of expressed viral genomes and the limited number of replication compartments.en_US
dc.language.isoen_USen_US
dc.relation.ispartofmBioen_US
dc.rightsFinal published version. This is an open access article.en_US
dc.titleHerpesvirus Replication Compartments Originate with Single Incoming Viral Genomesen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1128/mBio.00278-11-
dc.identifier.eissn2150-7511-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
Herpesvirus Replication Compartments Originate with Single Incoming Viral Genomes.pdf2.43 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.