Skip to main content

Pulsation Frequencies and Modes of Giant Exoplanets

Author(s): Le Bihan, Bastien; Burrows, Adam S.

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1jm6j
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLe Bihan, Bastien-
dc.contributor.authorBurrows, Adam S.-
dc.date.accessioned2019-04-10T19:31:15Z-
dc.date.available2019-04-10T19:31:15Z-
dc.date.issued2013-02-10en_US
dc.identifier.citationLe Bihan, Bastien, Burrows, Adam. (2013). Pulsation Frequencies and Modes of Giant Exoplanets. apj, 764 (18 - 18. doi:10.1088/0004-637X/764/1/18en_US
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1jm6j-
dc.description.abstractWe calculate the eigenfrequencies and eigenfunctions of the acoustic oscillations of giant exoplanets and explore the dependence of the characteristic frequency ν0 and the eigenfrequencies on several parameters: the planet mass, the planet radius, the core mass, and the heavy element mass fraction in the envelope. We provide the eigenvalues for degree l up to 8 and radial order n up to 12. For the selected values of l and n, we find that the pulsation eigenfrequencies depend strongly on the planet mass and radius, especially at high frequency. We quantify this dependence through the calculation of the characteristic frequency ν0 which gives us an estimate of the scale of the eigenvalue spectrum at high frequency. For the mass range 0.5 MJ MP 15 MJ , and fixing the planet radius to the Jovian value, we find that ν0 ∼ 164.0 × (MP /MJ ) 0.48 μHz, where MP is the planet mass and MJ is Jupiter’s mass. For the radius range from 0.9 to 2.0 RJ , and fixing the planet’s mass to the Jovian value, we find that ν0 ∼ 164.0 × (RP /RJ ) −2.09 μHz, where RP is the planet radius and RJ is Jupiter’s radius. We explore the influence of the presence of a dense core on the pulsation frequencies and on the characteristic frequency of giant exoplanets. We find that the presence of heavy elements in the envelope affects the eigenvalue distribution in ways similar to the presence of a dense core. Additionally, we apply our formalism to Jupiter and Saturn and find results consistent with both the observational data of Gaulme et al. and previous theoretical work.en_US
dc.language.isoen_USen_US
dc.relation.ispartofAstrophysical Journalen_US
dc.rightsFinal published version. This is an open access article.en_US
dc.titlePulsation Frequencies and Modes of Giant Exoplanetsen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1088/0004-637X/764/1/18-
dc.date.eissued2013-01-21en_US
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
Le_Bihan_2013_ApJ_764_18.pdf1.18 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.