Skip to main content

Chemostratigraphic and U-Pb geochronologic constraints on carbon cycling across the Silurian-Devonian boundary

Author(s): Husson, Jon M; Schoene, Blair; Bluher, Sarah; Maloof, Adam C

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1j96090g
Abstract: The Devonian Period hosts extraordinary changes to Earth’s biosphere. Land plants began their rise to prominence, with early vascular vegetation beginning its colonization of near-shore environments in the latest Silurian. Across the Silurian–Devonian (Pridoli–Lochkovian) transition, carbon isotope analyses of bulk marine carbonates (δ13Ccarb) from Laurentian and Baltic successions reveal a positive δ13Ccarb shift. Known as the Klonk Event, values reach +5.8 ‰, making it one of the largest carbon isotope excursions in the Phanerozoic. Assigning rates and durations to these significant events requires a robust, precise Devonian time scale. Here we present 675 micritic matrix and 357 fossil-specific δ13Ccarb analyses from the lower Devonian Helderberg Group of New York and West Virginia that exhibit the very positive δ13Ccarb values observed in other Silurian–Devonian basins. This chemostratigraphic dataset is coupled with 66 ID-TIMS U–Pb dates on single zircons from six ash falls intercalated within Helderberg sediments, including dates on the stratigraphically lowest Devonian ashes yet developed. In this work, we (a) demonstrate that matrix and fossil-specific δ13Ccarb values track one another closely in the Helderberg Group, (b) estimate the Silurian–Devonian boundary age in New York to be 421.3±1.2 Ma (2σ; including decay constant uncertainties), and (c) calculate the time required to evolve from baseline to peak δ13Ccarb values at the onset of the Klonk event to be 1.00 ± 0.25 Myr. Under these constraints, a steady-state perturbation to the global carbon cycle can explain the observed excursion with modern fluxes, as long as DIC concentration in the Devonian ocean remained below ∼2× the modern value. Therefore, potential drivers, such as enhanced burial of organic carbon, need not rely on anomalously high total fluxes of carbon to explain the Klonk Event.
Publication Date: 15-Feb-2016
Citation: Husson, Jon M., Blair Schoene, Sarah Bluher, and Adam C. Maloof. "Chemostratigraphic and U–Pb geochronologic constraints on carbon cycling across the Silurian–Devonian boundary." Earth and Planetary Science Letters 436 (2016): 108-120. doi: 10.1016/j.epsl.2015.11.044
DOI: doi:10.1016/j.epsl.2015.11.044
ISSN: 0012-821X
Pages: 108 - 120
Type of Material: Journal Article
Journal/Proceeding Title: Earth and Planetary Science Letters
Version: Author's manuscript



Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.