Skip to main content

Synthesizing developmental trajectories

Author(s): Villoutreix, Paul; Anden, Joakim; Lim, Bomyi; Lu, Hang; Kevrekidis, Yannis G; et al

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1j95q
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVilloutreix, Paul-
dc.contributor.authorAnden, Joakim-
dc.contributor.authorLim, Bomyi-
dc.contributor.authorLu, Hang-
dc.contributor.authorKevrekidis, Yannis G-
dc.contributor.authorSinger, Amit-
dc.contributor.authorShvartsman, Stanislav Y-
dc.date.accessioned2018-07-20T15:09:46Z-
dc.date.available2018-07-20T15:09:46Z-
dc.date.issued2017-09en_US
dc.identifier.citationVilloutreix, Paul, Anden, Joakim, Lim, Bomyi, Lu, Hang, Kevrekidis, Ioannis G, Singer, Amit, Shvartsman, Stanislav Y. (2017). Synthesizing developmental trajectories. PLOS COMPUTATIONAL BIOLOGY, 13 (10.1371/journal.pcbi.1005742en_US
dc.identifier.issn1553-734X-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1j95q-
dc.description.abstractDynamical processes in biology are studied using an ever-increasing number of techniques, each of which brings out unique features of the system. One of the current challenges is to develop systematic approaches for fusing heterogeneous datasets into an integrated view of multivariable dynamics. We demonstrate that heterogeneous data fusion can be successfully implemented within a semi-supervised learning framework that exploits the intrinsic geometry of high-dimensional datasets. We illustrate our approach using a dataset from studies of pattern formation in Drosophila. The result is a continuous trajectory that reveals the joint dynamics of gene expression, subcellular protein localization, protein phosphorylation, and tissue morphogenesis. Our approach can be readily adapted to other imaging modalities and forms a starting point for further steps of data analytics and modeling of biological dynamics.en_US
dc.language.isoen_USen_US
dc.relation.ispartofPLOS COMPUTATIONAL BIOLOGYen_US
dc.rightsFinal published version. This is an open access article.en_US
dc.titleSynthesizing developmental trajectoriesen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1371/journal.pcbi.1005742-
dc.date.eissued2017-09-18en_US
dc.identifier.eissn1553-7358-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
journal.pcbi.1005742.pdf8.31 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.