Skip to main content

Umbilic hypersurfaces of constant sigma-k curvature in the Heisenberg group

Author(s): Cheng, Jih-Hsin; Chiu, Hung-Lin; Hwang, Jenn-Fang; Yang, Paul C.

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1j40r
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCheng, Jih-Hsin-
dc.contributor.authorChiu, Hung-Lin-
dc.contributor.authorHwang, Jenn-Fang-
dc.contributor.authorYang, Paul C.-
dc.date.accessioned2019-04-05T21:44:53Z-
dc.date.available2019-04-05T21:44:53Z-
dc.date.issued2016-06en_US
dc.identifier.citationCheng, Jih-Hsin, Chiu, Hung-Lin, Hwang, Jenn-Fang, Yang, Paul. (2016). Umbilic hypersurfaces of constant sigma-k curvature in the Heisenberg group. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 55, doi:10.1007/s00526-016-1006-7en_US
dc.identifier.issn0944-2669-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1j40r-
dc.description.abstractWe study immersed, connected, umbilic hypersurfaces in the Heisenberg group H-n with n >= 2. We show that such a hypersurface, if closed, must be rotationally invariant up to a Heisenberg translation. Moreover, we prove that, among others, Pansu spheres are the only such spheres with positive constant sigma-k curvature up to Heisenberg translations.en_US
dc.format.extent1 - 28en_US
dc.languageEnglishen_US
dc.language.isoen_USen_US
dc.relation.ispartofCALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONSen_US
dc.rightsAuthor's manuscripten_US
dc.titleUmbilic hypersurfaces of constant sigma-k curvature in the Heisenberg groupen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1007/s00526-016-1006-7-
dc.date.eissued2016-05-24en_US
dc.identifier.eissn1432-0835-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
1512.05859.pdf700.16 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.