Loading [Contrib]/a11y/accessibility-menu.js
Skip to main content

Machine Learning, Markov Chain Monte Carlo, and Optimal Algorithms to Characterize the AdvACT Kilopixel Transition-Edge Sensor Arrays

Author(s): Salatino, Maria; Hubmayr, Johannes; Li, Yaqiong; Niemack, Michael D; Simon, Sara M; et al

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1j38kj01
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSalatino, Maria-
dc.contributor.authorHubmayr, Johannes-
dc.contributor.authorLi, Yaqiong-
dc.contributor.authorNiemack, Michael D-
dc.contributor.authorSimon, Sara M-
dc.contributor.authorStaggs, Suzanne T-
dc.contributor.authorWollack, Edward J-
dc.contributor.authorAustermann, Jason-
dc.contributor.authorBeall, James A-
dc.contributor.authorChoi, Steve-
dc.contributor.authorCrowley, Kevin T-
dc.contributor.authorDuff, Shannon-
dc.contributor.authorHenderson, Shawn W-
dc.contributor.authorHilton, Gene-
dc.contributor.authorHo, S-PP-
dc.date.accessioned2025-03-12T19:17:32Z-
dc.date.available2025-03-12T19:17:32Z-
dc.date.issued2019-04-11en_US
dc.identifier.citationSalatino, Maria, Hubmayr, Johannes, Li, Yaqiong, Niemack, Michael D, Simon, Sara M, Staggs, Suzanne T, Wollack, Edward J, Austermann, Jason, Beall, James A, Choi, Steve, Crowley, Kevin T, Duff, Shannon, Henderson, Shawn W, Hilton, Gene, Ho, S-PP. (2019). Machine Learning, Markov Chain Monte Carlo, and Optimal Algorithms to Characterize the AdvACT Kilopixel Transition-Edge Sensor Arrays. IEEE Transactions on Applied Superconductivity, 29 (5), 1 - 5. doi:10.1109/tasc.2019.2910542en_US
dc.identifier.issn1051-8223-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1j38kj01-
dc.description.abstractNext-generation focal planes comprising dozens of kilopixel transition-edge sensor (TES) arrays require new methods to rapidly screen candidate arrays, evaluate array non-idealities in the field, identify outlier devices for removal, and optimize the array performance in the field. We demonstrate robust methods to estimate TES parameters (critical temperatures and thermal conductivity parameters) and their uncertainties using a custom Markov Chain Monte Carlo (MCMC) algorithm. We also con- strain systematic effects in estimating the TES parameters from non-isothermal current-voltage curves (IVs) at approximately a ∼3% level. Additionally, for the first time, we have applied Machine Learning (ML) algorithms to tune detector arrays and optimize their performance.en_US
dc.format.extent1 - 5en_US
dc.relation.ispartofIEEE Transactions on Applied Superconductivityen_US
dc.rightsFinal published version. This is an open access article.en_US
dc.subjectKilopixel focal planes, Machine Learning, Markov Chain Monte Carlo, Transition-Edge Sensor.en_US
dc.titleMachine Learning, Markov Chain Monte Carlo, and Optimal Algorithms to Characterize the AdvACT Kilopixel Transition-Edge Sensor Arraysen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1109/tasc.2019.2910542-
dc.identifier.doi10.1109/TASC.2019.2910542-
dc.date.eissued2019-04-11en_US
dc.identifier.eissn1558-2515-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
Machine_Learning_Markov_Chain_Monte_Carlo_and_Optimal_Algorithms_to_Characterize_the_AdvACT_Kilopixel_Transition-Edge_Sensor_Arrays.pdf1.14 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.