Ruminations on matrix convexity and the strong subadditivity of quantum entropy
Author(s): Aizenman, Michael; Cipolloni, Giorgio
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr1j09w48p
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Aizenman, Michael | - |
dc.contributor.author | Cipolloni, Giorgio | - |
dc.date.accessioned | 2024-11-18T19:46:38Z | - |
dc.date.available | 2024-11-18T19:46:38Z | - |
dc.date.issued | 2023-02-03 | en_US |
dc.identifier.citation | Aizenman, Michael, Cipolloni, Giorgio. (2023). Ruminations on matrix convexity and the strong subadditivity of quantum entropy. Letters in Mathematical Physics, 113 (1), 10.1007/s11005-023-01638-2 | en_US |
dc.identifier.issn | 0377-9017 | - |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/pr1j09w48p | - |
dc.description.abstract | The familiar second derivative test for convexity, combined with resolvent calculus, is shown to yield a useful tool for the study of convex matrix-valued functions. We demonstrate the applicability of this approach on a number of theorems in this field. These include convexity principles which play an essential role in the Lieb–Ruskai proof of the strong subadditivity of quantum entropy. | en_US |
dc.language | en | en_US |
dc.relation.ispartof | Letters in Mathematical Physics | en_US |
dc.rights | Author's manuscript | en_US |
dc.subject | Matrix convexity · Quantum entropy · Strong subadditivity · Parallel sums | en_US |
dc.title | Ruminations on matrix convexity and the strong subadditivity of quantum entropy | en_US |
dc.type | Journal Article | en_US |
dc.identifier.doi | doi:10.1007/s11005-023-01638-2 | - |
dc.date.eissued | 2023-02-03 | en_US |
dc.identifier.eissn | 1573-0530 | - |
pu.type.symplectic | http://www.symplectic.co.uk/publications/atom-terms/1.0/journal-article | en_US |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
s11005-023-01638-2.pdf | 308.1 kB | Adobe PDF | View/Download |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.