Skip to main content

Ruminations on matrix convexity and the strong subadditivity of quantum entropy

Author(s): Aizenman, Michael; Cipolloni, Giorgio

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1j09w48p
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAizenman, Michael-
dc.contributor.authorCipolloni, Giorgio-
dc.date.accessioned2024-11-18T19:46:38Z-
dc.date.available2024-11-18T19:46:38Z-
dc.date.issued2023-02-03en_US
dc.identifier.citationAizenman, Michael, Cipolloni, Giorgio. (2023). Ruminations on matrix convexity and the strong subadditivity of quantum entropy. Letters in Mathematical Physics, 113 (1), 10.1007/s11005-023-01638-2en_US
dc.identifier.issn0377-9017-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1j09w48p-
dc.description.abstractThe familiar second derivative test for convexity, combined with resolvent calculus, is shown to yield a useful tool for the study of convex matrix-valued functions. We demonstrate the applicability of this approach on a number of theorems in this field. These include convexity principles which play an essential role in the Lieb–Ruskai proof of the strong subadditivity of quantum entropy.en_US
dc.languageenen_US
dc.relation.ispartofLetters in Mathematical Physicsen_US
dc.rightsAuthor's manuscripten_US
dc.subjectMatrix convexity · Quantum entropy · Strong subadditivity · Parallel sumsen_US
dc.titleRuminations on matrix convexity and the strong subadditivity of quantum entropyen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1007/s11005-023-01638-2-
dc.date.eissued2023-02-03en_US
dc.identifier.eissn1573-0530-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
s11005-023-01638-2.pdf308.1 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.