Skip to main content

On the topology of ending lamination space

Author(s): Gabai, David

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1j074
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGabai, David-
dc.date.accessioned2017-11-21T19:41:10Z-
dc.date.available2017-11-21T19:41:10Z-
dc.date.issued2014en_US
dc.identifier.citationGabai, David. (2014). On the topology of ending lamination space. GEOMETRY & TOPOLOGY, 18 (2683 - 2745. doi:10.2140/gt.2014.18.2683en_US
dc.identifier.issn1465-3060-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1j074-
dc.description.abstractWe show that if S is a finite-type orientable surface of genus g and with p punctures, where 3g + p >= 5 , then EL(S) is (n - 1)connected and (n - 1)locally connected, where dim(PML(S)) = 2n + 1= 6g + 2p - 7 . Furthermore, if g = 0 , then EL(S) is homeomorphic to the (p - 4)dimensional Nobeling space. Finally if n not equal 0 , then FPML(S) is connecteden_US
dc.format.extent2683 - 2745en_US
dc.language.isoenen_US
dc.relation.ispartofGEOMETRY & TOPOLOGYen_US
dc.rightsAuthor's manuscripten_US
dc.titleOn the topology of ending lamination spaceen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.2140/gt.2014.18.2683-
dc.date.eissued2014-12-01en_US
dc.identifier.eissn1364-0380-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
1105.3648v1.pdf587.17 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.