On the inviscid limit of the Navier-Stokes equations
Author(s): Constantin, Peter; Kukavica, Igor; Vicol, Vlad C.
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr1hs8x
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Constantin, Peter | - |
dc.contributor.author | Kukavica, Igor | - |
dc.contributor.author | Vicol, Vlad C. | - |
dc.date.accessioned | 2017-11-21T19:19:33Z | - |
dc.date.available | 2017-11-21T19:19:33Z | - |
dc.date.issued | 2015-07 | en_US |
dc.identifier.citation | Constantin, Peter, Kukavica, Igor, Vicol, Vlad. (On the inviscid limit of the Navier-Stokes equations, Proc. Amer. Math. Soc. 143 (2015), no. 7, 3075–3090. MR 3336632, https://doi.org/10.1090/S0002-9939-2015-12638-X | en_US |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/pr1hs8x | - |
dc.description.abstract | We consider the convergence in the $L^2$ norm, uniformly in time, of the Navier-Stokes equations with Dirichlet boundary conditions to the Euler equations with slip boundary conditions. We prove that if the Oleinik conditions of no back-flow in the trace of the Euler flow, and of a lower bound for the Navier-Stokes vorticity is assumed in a Kato-like boundary layer, then the inviscid limit holds. | en_US |
dc.format.extent | 3075-3090 | en_US |
dc.language.iso | en | en_US |
dc.relation.ispartof | PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY | en_US |
dc.rights | Author's manuscript | en_US |
dc.title | On the inviscid limit of the Navier-Stokes equations | en_US |
dc.type | Journal Article | en_US |
dc.identifier.doi | 10.1090/S0002-9939-2015-12638-X | - |
dc.date.eissued | 2015-03-04 | en_US |
pu.type.symplectic | http://www.symplectic.co.uk/publications/atom-terms/1.0/journal-article | en_US |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
1403.5748v2.pdf | 147.07 kB | Adobe PDF | View/Download |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.