Skip to main content

On the inviscid limit of the Navier-Stokes equations

Author(s): Constantin, Peter; Kukavica, Igor; Vicol, Vlad C.

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1hs8x
Full metadata record
DC FieldValueLanguage
dc.contributor.authorConstantin, Peter-
dc.contributor.authorKukavica, Igor-
dc.contributor.authorVicol, Vlad C.-
dc.date.accessioned2017-11-21T19:19:33Z-
dc.date.available2017-11-21T19:19:33Z-
dc.date.issued2015-07en_US
dc.identifier.citationConstantin, Peter, Kukavica, Igor, Vicol, Vlad. (On the inviscid limit of the Navier-Stokes equations, Proc. Amer. Math. Soc. 143 (2015), no. 7, 3075–3090. MR 3336632, https://doi.org/10.1090/S0002-9939-2015-12638-Xen_US
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1hs8x-
dc.description.abstractWe consider the convergence in the $L^2$ norm, uniformly in time, of the Navier-Stokes equations with Dirichlet boundary conditions to the Euler equations with slip boundary conditions. We prove that if the Oleinik conditions of no back-flow in the trace of the Euler flow, and of a lower bound for the Navier-Stokes vorticity is assumed in a Kato-like boundary layer, then the inviscid limit holds.en_US
dc.format.extent3075-3090en_US
dc.language.isoenen_US
dc.relation.ispartofPROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETYen_US
dc.rightsAuthor's manuscripten_US
dc.titleOn the inviscid limit of the Navier-Stokes equationsen_US
dc.typeJournal Articleen_US
dc.identifier.doi10.1090/S0002-9939-2015-12638-X-
dc.date.eissued2015-03-04en_US
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
1403.5748v2.pdf147.07 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.