Skip to main content

Minimax-optimal privacy-preserving sparse PCA in distributed systems

Author(s): Ge, Jason; Wang, Zhaoran; Wang, Mengdi; Liu, Han

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1hj36
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGe, Jason-
dc.contributor.authorWang, Zhaoran-
dc.contributor.authorWang, Mengdi-
dc.contributor.authorLiu, Han-
dc.date.accessioned2020-02-24T22:32:40Z-
dc.date.available2020-02-24T22:32:40Z-
dc.date.issued2018-01-01en_US
dc.identifier.citationGe, J, Wang, Z, Wang, M, Liu, H. (2018). Minimax-optimal privacy-preserving sparse PCA in distributed systems. International Conference on Artificial Intelligence and Statistics, AISTATS 2018, 1589 - 1598en_US
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1hj36-
dc.description.abstractCopyright 2018 by the author(s). This paper proposes a distributed privacy-preserving sparse PCA (DPS-PCA) algorithm that generates a minimax-optimal sparse PCA estimator under differential privacy constraints. In a distributed optimization framework, data providers can use this algorithm to collaboratively analyze the union of their data sets while limiting the disclosure of their private information. DPS-PCA can recover the leading eigenspace of the population covariance at a geometric convergence rate, and simultaneously achieves the optimal minimax statistical error for high-dimensional data. Our algorithm provides fine-tuned control over the tradeoff between estimation accuracy and privacy preservation. Numerical simulations demonstrate that DPS-PCA significantly outperforms other privacy-preserving PCA methods in terms of estimation accuracy and computational efficiency.en_US
dc.format.extent1589 - 1598en_US
dc.language.isoen_USen_US
dc.relation.ispartofInternational Conference on Artificial Intelligence and Statistics, AISTATS 2018en_US
dc.rightsAuthor's manuscripten_US
dc.titleMinimax-optimal privacy-preserving sparse PCA in distributed systemsen_US
dc.typeJournal Articleen_US
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/conference-proceedingen_US

Files in This Item:
File Description SizeFormat 
OA_MinimaxOptimalPrivacyPreservingSparsePCADistributedSystems.pdf1.56 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.