Minimax-optimal privacy-preserving sparse PCA in distributed systems
Author(s): Ge, Jason; Wang, Zhaoran; Wang, Mengdi; Liu, Han
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr1hj36
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ge, Jason | - |
dc.contributor.author | Wang, Zhaoran | - |
dc.contributor.author | Wang, Mengdi | - |
dc.contributor.author | Liu, Han | - |
dc.date.accessioned | 2020-02-24T22:32:40Z | - |
dc.date.available | 2020-02-24T22:32:40Z | - |
dc.date.issued | 2018-01-01 | en_US |
dc.identifier.citation | Ge, J, Wang, Z, Wang, M, Liu, H. (2018). Minimax-optimal privacy-preserving sparse PCA in distributed systems. International Conference on Artificial Intelligence and Statistics, AISTATS 2018, 1589 - 1598 | en_US |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/pr1hj36 | - |
dc.description.abstract | Copyright 2018 by the author(s). This paper proposes a distributed privacy-preserving sparse PCA (DPS-PCA) algorithm that generates a minimax-optimal sparse PCA estimator under differential privacy constraints. In a distributed optimization framework, data providers can use this algorithm to collaboratively analyze the union of their data sets while limiting the disclosure of their private information. DPS-PCA can recover the leading eigenspace of the population covariance at a geometric convergence rate, and simultaneously achieves the optimal minimax statistical error for high-dimensional data. Our algorithm provides fine-tuned control over the tradeoff between estimation accuracy and privacy preservation. Numerical simulations demonstrate that DPS-PCA significantly outperforms other privacy-preserving PCA methods in terms of estimation accuracy and computational efficiency. | en_US |
dc.format.extent | 1589 - 1598 | en_US |
dc.language.iso | en_US | en_US |
dc.relation.ispartof | International Conference on Artificial Intelligence and Statistics, AISTATS 2018 | en_US |
dc.rights | Author's manuscript | en_US |
dc.title | Minimax-optimal privacy-preserving sparse PCA in distributed systems | en_US |
dc.type | Journal Article | en_US |
pu.type.symplectic | http://www.symplectic.co.uk/publications/atom-terms/1.0/conference-proceeding | en_US |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
OA_MinimaxOptimalPrivacyPreservingSparsePCADistributedSystems.pdf | 1.56 MB | Adobe PDF | View/Download |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.