Skip to main content

Visualizing heavy fermion confinement and Pauli-limited superconductivity in layered CeCoIn5

Author(s): Gyenis, Andras; Feldman, Benjamin E.; Randeria, Mallika T.; Peterson, Gabriel A.; Bauer, Eric D.; et al

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1h991
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGyenis, Andras-
dc.contributor.authorFeldman, Benjamin E.-
dc.contributor.authorRanderia, Mallika T.-
dc.contributor.authorPeterson, Gabriel A.-
dc.contributor.authorBauer, Eric D.-
dc.contributor.authorAynajian, Pegor-
dc.contributor.authorYazdani, Ali-
dc.date.accessioned2019-04-05T16:34:42Z-
dc.date.available2019-04-05T16:34:42Z-
dc.date.issued2018-02-07en_US
dc.identifier.citationGyenis, Andras, Feldman, Benjamin E, Randeria, Mallika T, Peterson, Gabriel A, Bauer, Eric D, Aynajian, Pegor, Yazdani, Ali. (2018). Visualizing heavy fermion confinement and Pauli-limited superconductivity in layered CeCoIn5. NATURE COMMUNICATIONS, 9, doi:10.1038/s41467-018-02841-9en_US
dc.identifier.issn2041-1723-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1h991-
dc.description.abstractLayered material structures play a key role in enhancing electron-electron interactions to create correlated metallic phases that can transform into unconventional superconducting states. The quasi-two-dimensional electronic properties of such compounds are often inferred indirectly through examination of bulk properties. Here we use scanning tunneling microscopy to directly probe in cross-section the quasi-two-dimensional electronic states of the heavy fermion superconductor CeCoIn5. Our measurements reveal the strong confined nature of quasiparticles, anisotropy of tunneling characteristics, and layer-by-layer modulated behavior of the precursor pseudogap gap phase. In the interlayer coupled superconducting state, the orientation of line defects relative to the d-wave order parameter determines whether in-gap states form due to scattering. Spectroscopic imaging of the anisotropic magnetic vortex cores directly characterizes the short interlayer superconducting coherence length and shows an electronic phase separation near the upper critical in-plane magnetic field, consistent with a Pauli-limited first-order phase transition into a pseudogap phase.en_US
dc.format.extent1 - 8en_US
dc.language.isoen_USen_US
dc.relation.ispartofNATURE COMMUNICATIONSen_US
dc.rightsFinal published version. This is an open access article.en_US
dc.titleVisualizing heavy fermion confinement and Pauli-limited superconductivity in layered CeCoIn5en_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1038/s41467-018-02841-9-
dc.date.eissued2018-02-07en_US
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
s41467-018-02841-9.pdf1.69 MBAdobe PDFView/Download
41467_2018_2841_MOESM1_ESM.pdf10.7 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.