Skip to main content

ANISOTROPIC FORMATION OF MAGNETIZED CORES IN TURBULENT CLOUDS

Author(s): Chen, Che-Yu; Ostriker, Eve C

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1h98zc8m
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChen, Che-Yu-
dc.contributor.authorOstriker, Eve C-
dc.date.accessioned2022-01-25T15:02:49Z-
dc.date.available2022-01-25T15:02:49Z-
dc.date.issued2015-09-10en_US
dc.identifier.citationChen, Che-Yu, Ostriker, Eve C. (2015). ANISOTROPIC FORMATION OF MAGNETIZED CORES IN TURBULENT CLOUDS. ASTROPHYSICAL JOURNAL, 810 (10.1088/0004-637X/810/2/126en_US
dc.identifier.issn0004-637X-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1h98zc8m-
dc.description.abstractIn giant molecular clouds (GMCs), shocks driven by converging turbulent flows create high-density, strongly magnetized regions that are locally sheetlike. In previous work, we showed that within these layers, dense filaments and embedded self-gravitating cores form by gathering material along the magnetic field lines. Here, we extend the parameter space of our three-dimensional, turbulent MHD core formation simulations. We confirm the anisotropic core formation model we previously proposed and quantify the dependence of median core properties on the pre-shock inflow velocity and upstream magnetic field strength. Our results suggest that bound core properties are set by the total dynamic pressure (dominated by large-scale turbulence) and thermal sound speed c(s) in GMCs, independent of magnetic field strength. For models with a Mach number between 5 and 20, the median core masses and radii are comparable to the critical Bonnor-Ebert mass and radius defined using the dynamic pressure for P-ext. Our results correspond toM(core) = 1.2c(s)(4)(G(3)rho(0)nu(2)(0))(-1/2) and R-core = 0.34c(s)(2)(G rho(0)nu(2)(0))(-1/2) for rho(0) and nu(0), the large-scale mean density and velocity. For our parameter range, the medianM(core) similar to 0.1-1M(circle dot), but a very high pressure cloud could have lower characteristic core mass. We find cores and filaments form simultaneously, and filament column densities are a factor of similar to 2 greater than the surrounding cloud when cores first collapse. We also show that cores identified in our simulations have physical properties comparable to those observed in the Perseus cloud. Superthermal cores in our models are generally also magnetically supercritical, suggesting that the same may be true in observed clouds.en_US
dc.language.isoen_USen_US
dc.relationhttps://ui.adsabs.harvard.edu/abs/2015ApJ...810..126C/abstracten_US
dc.relation.ispartofASTROPHYSICAL JOURNALen_US
dc.rightsFinal published version. Article is made available in OAR by the publisher's permission or policy.en_US
dc.titleANISOTROPIC FORMATION OF MAGNETIZED CORES IN TURBULENT CLOUDSen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1088/0004-637X/810/2/126-
dc.identifier.eissn1538-4357-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
Chen_2015_ApJ_810_126.pdf3.4 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.